메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 1829-1850

Nonlinear models using dirichlet process mixtures

Author keywords

Classification; Dirichlet process; Mixture models

Indexed keywords

ALTERNATIVE METHODS; CLASSIFICATION; COVARIATES; DIRICHLET PROCESS; DIRICHLET PROCESS MIXTURE; HIDDEN STRUCTURES; JOINT DISTRIBUTIONS; MIXTURE COMPONENTS; MIXTURE MODELS; MULTINOMIAL LOGIT; NEW APPROACHES; NON-LINEAR MODEL; PARKINSON'S DISEASE; PREDICTIVE ACCURACY; PROTEIN SEQUENCES; REGRESSION COEFFICIENT; SIMULATED DATA; SUB-POPULATIONS; TWO CLASSIFICATION;

EID: 70349425847     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (190)

References (44)
  • 2
    • 0000708831 scopus 로고
    • Mixture of Dirichlet process with applications to Bayesian nonparametric problems
    • C. E. Antoniak. Mixture of Dirichlet process with applications to Bayesian nonparametric problems. Annals of Statistics, 273(5281):1152-1174, 1974.
    • (1974) Annals of Statistics , vol.273 , Issue.5281 , pp. 1152-1174
    • Antoniak, C.E.1
  • 3
    • 0002617436 scopus 로고
    • Ferguson distributions via polya urn scheme
    • D. Blackwell and J. B. MacQueen. Ferguson distributions via polya urn scheme. Annals of Statistics, 1:353-355, 1973.
    • (1973) Annals of Statistics , vol.1 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 4
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • D. M. Blei and M. I. Jordan. Variational inference for dirichlet process mixtures. Bayesian Analysis, 1:121-144,2005.
    • (2005) Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 7
    • 0000904732 scopus 로고    scopus 로고
    • A semi-parametric Bayesian model for randomized block designs
    • C. A. Bush and S. N. MacEachern. A semi-parametric Bayesian model for randomized block designs. Biometrika, 83:275-286, 1996.
    • (1996) Biometrika , vol.83 , pp. 275-286
    • Bush, C.A.1    MacEachern, S.N.2
  • 8
    • 33745256442 scopus 로고    scopus 로고
    • Bayesian covariance selection in generalized linear mixed models
    • DOI 10.1111/j.1541-0420.2005.00499.x
    • B. Cai and D. B. Dunson. Bayesian covariance selection in generalized linear mixed models. Biometrics, 62:446-457, 2006. (Pubitemid 43926649)
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 446-457
    • Cai, B.1    Dunson, D.B.2
  • 10
    • 0442325081 scopus 로고    scopus 로고
    • Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models
    • M. J. Daniels and R. E. Kass. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94(448): 1254-1263, 1999.
    • (1999) Journal of the American Statistical Association , vol.94 , Issue.448 , pp. 1254-1263
    • Daniels, M.J.1    Kass, R.E.2
  • 11
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognision using support vector machines and neural networks. Bioinformatics, 17(4):349-358, 2001. (Pubitemid 32421929)
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 13
  • 14
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1: 209-230,1973.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 15
    • 0001787029 scopus 로고
    • Ed: Rizvi, H. and Rustagi, J., chapter Bayesian density estimation by mixtures of normal distributions Academic Press, New York
    • T. S. Ferguson. Recent Advances in Statistics, Ed: Rizvi, H. and Rustagi, J., chapter Bayesian density estimation by mixtures of normal distributions, pages 287-302. Academic Press, New York, 1983.
    • (1983) Recent Advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 16
  • 17
    • 0003744820 scopus 로고    scopus 로고
    • The em algorithm for mixtures of factor analyzers
    • Department of Computer Science, University of Toronto
    • Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyzers. Technical report, Technical Report CRG-TR-96-101, Department of Computer Science, University of Toronto, 1996.
    • (1996) Technical Report, Technical Report CRG-TR-96-101
    • Ghahramani, Z.1    Hinton, G.E.2
  • 19
    • 0028205447 scopus 로고
    • Enlarged representative set of proteins
    • U. Hobohm and C. Sander. Enlarged representative set of proteins. Protein Science, 3:522-524, 1994.
    • (1994) Protein Science , vol.3 , pp. 522-524
    • Hobohm, U.1    Sander, C.2
  • 20
    • 0027092678 scopus 로고
    • Selection of a representative set of structure from the brookhaven protein bank
    • U. Hobohm, M. Scharf, R. Schneider, and C. Sander. Selection of a representative set of structure from the brookhaven protein bank. Protein Science, 1:409-417, 1992.
    • (1992) Protein Science , vol.1 , pp. 409-417
    • Hobohm, U.1    Scharf, M.2    Schneider, R.3    Sander, C.4
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 23
    • 44649182304 scopus 로고    scopus 로고
    • Splitting and merging components of a nonconjugate Dirichlet process mixture model (with discussion)
    • S. Jain and R. M. Neal. Splitting and merging components of a nonconjugate Dirichlet process mixture model (with discussion). Bayesian Analysis, 2:445-472, 2007.
    • (2007) Bayesian Analysis , vol.2 , pp. 445-472
    • Jain, S.1    Neal, R.M.2
  • 28
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate mormal mixtures
    • P Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate mormal mixtures. Biometrika, 83(1):67-79, 1996.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 67-79
    • Müller, P.1    Erkanli, A.2    West, M.3
  • 29
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 30
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • R. M. Neal. Slice sampling. Annals of Statistics, 31(3):705-767, 2003.
    • (2003) Annals of Statistics , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 31
    • 0004087397 scopus 로고
    • Probabilistic Inference Using Markov Chain Monte Carlo Methods
    • Department of Computer Science, University of Toronto
    • R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-101, Department of Computer Science, University of Toronto, 1993.
    • (1993) Technical Report CRG-TR-93-101 , pp. 93-101
    • Neal, R.M.1
  • 33
    • 33845900973 scopus 로고    scopus 로고
    • Phonatory impairment in Parkinson's disease: Evidence from nonlinear dynamic analysis and perturbation analysis.(Clinical report)
    • D. A. Rahn, M. Chou, J. J. Jiang, and Y Zhang. Phonatory impairment in Parkinson's disease: evidence from nonlinear dynamic analysis and perturbation analysis.(Clinical report). Journal of Voice, 21:64-71, 2007.
    • (2007) Journal of Voice , vol.21 , pp. 64-71
    • Rahn, D.A.1    Chou, M.2    Jiang, J.J.3    Zhang, Y.4
  • 35
    • 34250232348 scopus 로고    scopus 로고
    • EM algorithms for ML factor analysis
    • D. Rubin and D. Thayer. EM algorithms for ML factor analysis. Pshychometrika, 47(1):69-76, 2007.
    • (2007) Pshychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 36
    • 34548562217 scopus 로고    scopus 로고
    • Effects of intensive voice treatment (the Lee Silverman Voice Treatment [lsvt]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: Acoustic and perceptual findings
    • S. Sapir, J. L. Spielman, L. O. Ramig, B. H. Story, and C. Fox. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [lsvt]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: Acoustic and perceptual findings. Journal of Speech, Language, and Hearing Research, 50(4):899-912, 2007.
    • (2007) Journal of Speech, Language, and Hearing Research , vol.50 , Issue.4 , pp. 899-912
    • Sapir, S.1    Spielman, J.L.2    Ramig, L.O.3    Story, B.H.4    Fox, C.5
  • 37
    • 67650896050 scopus 로고    scopus 로고
    • Discovering hidden structures using mixture models: Application to nonlinear time series processes
    • Article 5
    • B. Shahbaba. Discovering hidden structures using mixture models: Application to nonlinear time series processes. Studies in Nonlinear Dynamics & Econometrics, 13(2):Article 5, 2009.
    • (2009) Studies in Nonlinear Dynamics & Econometrics , vol.13 , pp. 2
    • Shahbaba, B.1
  • 39
    • 46249113842 scopus 로고    scopus 로고
    • Improving classification when a class hierarchy is available using a hierarchy-based prior
    • B. Shahbaba and R. M. Neal. Improving classification when a class hierarchy is available using a hierarchy-based prior. Bayesian Analysis, 2(1):221-238, 2007.
    • (2007) Bayesian Analysis , vol.2 , Issue.1 , pp. 221-238
    • Shahbaba, B.1    Neal, R.M.2
  • 40
    • 33750304849 scopus 로고    scopus 로고
    • Gene function classification using Bayesian models with hierarchybased priors
    • B. Shahbaba and R. M. Neal. Gene function classification using Bayesian models with hierarchybased priors. BMC Bioinformatics, 7:448, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 448
    • Shahbaba, B.1    Neal, R.M.2
  • 43
    • 0003450542 scopus 로고
    • Springer-Verlag New York, Inc., New York, NY, USA, ISBN 0-387-94559-8.
    • V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995. ISBN 0-387-94559-8.
    • (1995) The Nature of Statistical Learning Theory.
    • Vapnik, V.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.