메뉴 건너뛰기




Volumn 94, Issue 1, 2014, Pages 81-104

Fast relational learning using bottom clause propositionalization with artificial neural networks

Author keywords

Artificial neural networks; Inductive logic programming; Neural symbolic integration; Propositionalization; Relational learning

Indexed keywords

BACK-GROUND KNOWLEDGE; MACHINE LEARNING APPLICATIONS; NEURAL-SYMBOLIC INTEGRATION; NEURAL-SYMBOLIC SYSTEMS; PROPOSITIONAL LOGIC; PROPOSITIONALIZATION; RELATIONAL LEARNING; STATISTICAL FEATURES;

EID: 84891373440     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5392-1     Document Type: Article
Times cited : (135)

References (55)
  • 1
    • 33750250687 scopus 로고
    • Learning optimal chess strategies
    • Bain, M., & Muggleton, S. (1994). Learning optimal chess strategies. Machine Intelligence, 13, 291-309.
    • (1994) Machine Intelligence , vol.13 , pp. 291-309
    • Bain, M.1    Muggleton, S.2
  • 2
    • 84891373119 scopus 로고    scopus 로고
    • Learning logic programs with neural networks
    • Springer Berlin
    • Basilio, R., Zaverucha, G., & Barbosa, V. (2001). Learning logic programs with neural networks. In LNAI: Vol. 2157. Proc. ILP (pp. 402-408). Berlin: Springer.
    • (2001) LNAI: Vol. 2157. Proc. ILP , vol.2157 , pp. 402-408
    • Basilio, R.1    Zaverucha, G.2    Barbosa, V.3
  • 3
    • 0000782329 scopus 로고    scopus 로고
    • Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
    • MIT Press Cambridge
    • Caruana, R., Lawrence, S., & Giles, C. L. (2000). Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In Proc. NIPS (Vol. 13, pp. 402-408). Cambridge: MIT Press.
    • (2000) Proc. NIPS , vol.13 , pp. 402-408
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 5
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 7
    • 85156234012 scopus 로고
    • Extracting tree-structured representations of trained networks
    • MIT Press Cambridge
    • Craven, M., & Shavlik, J. W. (1995). Extracting tree-structured representations of trained networks. In Proc. NIPS (Vol. 9, pp. 24-30). Cambridge: MIT Press.
    • (1995) Proc. NIPS , vol.9 , pp. 24-30
    • Craven, M.1    Shavlik, J.W.2
  • 8
    • 33646424350 scopus 로고    scopus 로고
    • An integrated approach to learning Bayesian networks of rules
    • Springer Berlin
    • Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84-95). Berlin: Springer.
    • (2005) LNAI: Vol. 3720. Proc. ECML , vol.3720 , pp. 84-95
    • Davis, J.1    Burnside, E.S.2    Dutra, I.C.3    Page, D.4    Costa, V.S.5
  • 11
    • 22944431848 scopus 로고    scopus 로고
    • Learning an approximation to inductive logic programming clause evaluation
    • Springer Berlin
    • DiMaio, F., & Shavlik, J. W. (2004). Learning an approximation to inductive logic programming clause evaluation. In LNAI: Vol. 3194. Proc. ILP (pp. 80-97). Berlin: Springer.
    • (2004) LNAI: Vol. 3194. Proc. ILP , pp. 80-97
    • Dimaio, F.1    Shavlik, J.W.2
  • 12
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • 10.1142/S0219720005001004 2159941
    • Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185-205.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 14
    • 0033164970 scopus 로고    scopus 로고
    • The connectionist inductive learning and logic programming system
    • 10.1023/A:1008328630915
    • Garcez, A. S. D., & Zaverucha, G. (1999). The connectionist inductive learning and logic programming system. Applied Intelligence, 11, 59-77.
    • (1999) Applied Intelligence , vol.11 , pp. 59-77
    • Garcez, A.S.D.1    Zaverucha, G.2
  • 15
    • 84865094983 scopus 로고    scopus 로고
    • Multi-instance learning using recurrent neural networks
    • IEEE Press New York
    • Garcez, A. S. D., & Zaverucha, G. (2012). Multi-instance learning using recurrent neural networks. In Proc. IJCNN (pp. 1-6). New York: IEEE Press.
    • (2012) Proc. IJCNN , pp. 1-6
    • Garcez, A.S.D.1    Zaverucha, G.2
  • 16
    • 0035127989 scopus 로고    scopus 로고
    • Symbolic knowledge extraction from trained neural networks: A sound approach
    • 10.1016/S0004-3702(00)00077-1 0969.68124 1805645
    • Garcez, A. S. D., Broda, K., & Gabbay, D. M. (2001). Symbolic knowledge extraction from trained neural networks: a sound approach. Artificial Intelligence, 125(1-2), 155-207.
    • (2001) Artificial Intelligence , vol.125 , Issue.1-2 , pp. 155-207
    • Garcez, A.S.D.1    Broda, K.2    Gabbay, D.M.3
  • 20
    • 79959430519 scopus 로고    scopus 로고
    • First-order logic learning in artificial neural networks
    • IEEE Press New York
    • Guillame-Bert, M., Broda, K., & Garcez, A. S. D. (2010). First-order logic learning in artificial neural networks. In Proc. IJCNN (pp. 1-8). New York: IEEE Press.
    • (2010) Proc. IJCNN , pp. 1-8
    • Guillame-Bert, M.1    Broda, K.2    Garcez, A.S.D.3
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 1102.68556
    • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 23
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • 10.1016/0893-6080(88)90003-2
    • Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1(4), 295-307.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1
  • 25
    • 0000183134 scopus 로고
    • Relating chemical activity to structure: An examination of ILP successes
    • 10.1007/BF03037232
    • King, R. D., & Srinivasan, A. (1995). Relating chemical activity to structure: an examination of ILP successes. New Generation Computing, 13(3-4), 411-434.
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 411-434
    • King, R.D.1    Srinivasan, A.2
  • 26
  • 28
    • 1942515438 scopus 로고    scopus 로고
    • Propositionalization approaches to relational data mining
    • S. Džeroski (eds) Springer New York 10.1007/978-3-662-04599-2-11
    • Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Džeroski (Ed.), Relational data mining (pp. 262-291). New York: Springer.
    • (2001) Relational Data Mining , pp. 262-291
    • Kramer, S.1    Lavrač, N.2    Flach, P.3
  • 29
    • 22944469922 scopus 로고    scopus 로고
    • Facets of aggregation approaches to propositionalization
    • Springer Berlin
    • Krogel, M. A., & Wrobel, S. (2003). Facets of aggregation approaches to propositionalization. In LNAI: Vol. 2835. Proc. ILP (pp. 30-39). Berlin: Springer.
    • (2003) LNAI: Vol. 2835. Proc. ILP , vol.2835 , pp. 30-39
    • Krogel, M.A.1    Wrobel, S.2
  • 31
    • 79958793910 scopus 로고    scopus 로고
    • Block-wise construction of tree-like relational features with monotone reducibility and redundancy
    • 10.1007/s10994-010-5208-5 1237.68151 3108208
    • Kuželka, O., & Železný, F. (2011). Block-wise construction of tree-like relational features with monotone reducibility and redundancy. Machine Learning, 83, 163-192.
    • (2011) Machine Learning , vol.83 , pp. 163-192
    • Kuželka, O.1    Železný, F.2
  • 34
  • 35
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • 10.1016/S0893-6080(05)80056-5
    • Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 36
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • 10.1007/BF03037227
    • Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3-4), 245-286.
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.1
  • 37
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • 10.1016/0743-1066(94)90035-3
    • Muggleton, S., & De Raedt, L. D. (1994). Inductive logic programming: theory and methods. The Journal of Logic Programming, 19/20, 629-679.
    • (1994) The Journal of Logic Programming , vol.19-20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.D.2
  • 38
    • 37849037799 scopus 로고    scopus 로고
    • QG/GA: A stochastic search for Progol
    • 10.1007/s10994-007-5029-3
    • Muggleton, S., & Tamaddoni-Nezhad, A. (2008). QG/GA: a stochastic search for Progol. Machine Learning, 70, 121-133.
    • (2008) Machine Learning , vol.70 , pp. 121-133
    • Muggleton, S.1    Tamaddoni-Nezhad, A.2
  • 39
    • 77955023450 scopus 로고    scopus 로고
    • Chess revision: Acquiring the rules of chess variants through FOL theory revision from examples
    • Springer Berlin
    • Muggleton, S., Paes, A., Costa, V. S., & Zaverucha, G. (2010). Chess revision: acquiring the rules of chess variants through FOL theory revision from examples. In LNAI: Vol. 5989. Proc. ILP (pp. 123-130). Berlin: Springer.
    • (2010) LNAI: Vol. 5989. Proc. ILP , pp. 123-130
    • Muggleton, S.1    Paes, A.2    Costa, V.S.3    Zaverucha, G.4
  • 41
    • 26944453186 scopus 로고    scopus 로고
    • Probabilistic first-order theory revision from examples
    • Springer Berlin
    • Paes, A., Revoredo, K., Zaverucha, G., & Costa, V. S. (2005). Probabilistic first-order theory revision from examples. In LNAI: Vol. 3625. Proc. ILP (pp. 295-311). Berlin: Springer.
    • (2005) LNAI: Vol. 3625. Proc. ILP , vol.3625 , pp. 295-311
    • Paes, A.1    Revoredo, K.2    Zaverucha, G.3    Costa, V.S.4
  • 42
    • 38049098082 scopus 로고    scopus 로고
    • ILP through propositionalization and stochastic k-term DNF learning
    • Springer Berlin
    • Paes, A., Železný, F., Zaverucha, G., Page, D., & Srinivasan, A. (2007). ILP through propositionalization and stochastic k-term DNF learning. In LNAI: Vol. 4455. Proc. ILP (pp. 379-393). Berlin: Springer.
    • (2007) LNAI: Vol. 4455. Proc. ILP , vol.4455 , pp. 379-393
    • Paes, A.1    Železný, F.2    Zaverucha, G.3    Page, D.4    Srinivasan, A.5
  • 43
    • 40249096014 scopus 로고    scopus 로고
    • Revising first-order logic theories from examples through stochastic local search
    • Springer Berlin
    • Paes, A., Zaverucha, G., & Costa, V. S. (2008). Revising first-order logic theories from examples through stochastic local search. In LNAI: Vol. 4894. Proc. ILP (pp. 200-210). Berlin: Springer.
    • (2008) LNAI: Vol. 4894. Proc. ILP , vol.4894 , pp. 200-210
    • Paes, A.1    Zaverucha, G.2    Costa, V.S.3
  • 44
    • 84883590863 scopus 로고    scopus 로고
    • Gene classification: Issues and challenges for relational learning
    • ACM Press New York 10.1145/1090193.1090204
    • Perlich, C., & Merugu, S. (2005). Gene classification: issues and challenges for relational learning. In Proc. 4th international workshop on multi-relational mining (pp. 61-67). New York: ACM Press.
    • (2005) Proc. 4th International Workshop on Multi-relational Mining , pp. 61-67
    • Perlich, C.1    Merugu, S.2
  • 45
    • 84864839459 scopus 로고    scopus 로고
    • Learning theories using estimation distribution algorithms and (reduced) bottom clauses
    • Springer Berlin
    • Pitangui, C. G., & Zaverucha, G. (2012). Learning theories using estimation distribution algorithms and (reduced) bottom clauses. In LNAI: Vol. 7207. Proc. ILP (pp. 286-301). Berlin: Springer.
    • (2012) LNAI: Vol. 7207. Proc. ILP , vol.7207 , pp. 286-301
    • Pitangui, C.G.1    Zaverucha, G.2
  • 48
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • 10.1007/s10994-006-5833-1
    • Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107-136.
    • (2006) Machine Learning , vol.62 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 51
    • 84891372147 scopus 로고    scopus 로고
    • version 5. Accessed 27 March 2013
    • Srinivasan, A. (2007). The Aleph System, version 5. http://www.cs.ox.ac. uk/activities/machlearn/Aleph/aleph.html. Accessed 27 March 2013.
    • (2007) The Aleph System
    • Srinivasan, A.1
  • 52
    • 0342280994 scopus 로고
    • Mutagenesis: ILP experiments in a non-determinate biological domain
    • Springer Berlin
    • Srinivasan, A., & Muggleton, S. H. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217-232). Berlin: Springer.
    • (1994) LNAI: Vol. 237. Proc. ILP , vol.237 , pp. 217-232
    • Srinivasan, A.1    Muggleton, S.H.2
  • 53
    • 67649643792 scopus 로고    scopus 로고
    • The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause
    • 10.1007/s10994-009-5117-7
    • Tamaddoni-Nezhad, A., & Muggleton, S. (2009). The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Machine Learning, 76(1), 37-72.
    • (2009) Machine Learning , vol.76 , Issue.1 , pp. 37-72
    • Tamaddoni-Nezhad, A.1    Muggleton, S.2
  • 54
    • 79958846424 scopus 로고    scopus 로고
    • Neural networks for relational learning: An experimental comparison
    • 10.1007/s10994-010-5196-5 3108196
    • Uwents, W., Monfardini, G., Blockeel, H., Gori, M., & Scarselli, F. (2011). Neural networks for relational learning: an experimental comparison. Machine Learning, 82(3), 315-349.
    • (2011) Machine Learning , vol.82 , Issue.3 , pp. 315-349
    • Uwents, W.1    Monfardini, G.2    Blockeel, H.3    Gori, M.4    Scarselli, F.5
  • 55
    • 32144454875 scopus 로고    scopus 로고
    • Propositionalization-based relational subgroup discovery with RSD
    • 10.1007/s10994-006-5834-0
    • Železný, F., & Lavrač, N. (2006). Propositionalization-based relational subgroup discovery with RSD. Machine Learning, 62, 33-63.
    • (2006) Machine Learning , vol.62 , pp. 33-63
    • Železný, F.1    Lavrač, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.