-
1
-
-
33750250687
-
Learning optimal chess strategies
-
Bain, M., & Muggleton, S. (1994). Learning optimal chess strategies. Machine Intelligence, 13, 291-309.
-
(1994)
Machine Intelligence
, vol.13
, pp. 291-309
-
-
Bain, M.1
Muggleton, S.2
-
2
-
-
84891373119
-
Learning logic programs with neural networks
-
Springer Berlin
-
Basilio, R., Zaverucha, G., & Barbosa, V. (2001). Learning logic programs with neural networks. In LNAI: Vol. 2157. Proc. ILP (pp. 402-408). Berlin: Springer.
-
(2001)
LNAI: Vol. 2157. Proc. ILP
, vol.2157
, pp. 402-408
-
-
Basilio, R.1
Zaverucha, G.2
Barbosa, V.3
-
3
-
-
0000782329
-
Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
-
MIT Press Cambridge
-
Caruana, R., Lawrence, S., & Giles, C. L. (2000). Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In Proc. NIPS (Vol. 13, pp. 402-408). Cambridge: MIT Press.
-
(2000)
Proc. NIPS
, vol.13
, pp. 402-408
-
-
Caruana, R.1
Lawrence, S.2
Giles, C.L.3
-
4
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
0994.68128
-
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
5
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
-
(1989)
Machine Learning
, vol.3
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
6
-
-
0031579307
-
Noise robustness in multilayer neural networks
-
10.1209/epl/i1997-00167-2
-
Copelli, M., Eichhorn, R., Kinouchi, O., Biehl, M., Simonetti, R., Riegler, P., & Caticha, N. (1997). Noise robustness in multilayer neural networks. Europhysics Letters, 37(6), 427-432.
-
(1997)
Europhysics Letters
, vol.37
, Issue.6
, pp. 427-432
-
-
Copelli, M.1
Eichhorn, R.2
Kinouchi, O.3
Biehl, M.4
Simonetti, R.5
Riegler, P.6
Caticha, N.7
-
7
-
-
85156234012
-
Extracting tree-structured representations of trained networks
-
MIT Press Cambridge
-
Craven, M., & Shavlik, J. W. (1995). Extracting tree-structured representations of trained networks. In Proc. NIPS (Vol. 9, pp. 24-30). Cambridge: MIT Press.
-
(1995)
Proc. NIPS
, vol.9
, pp. 24-30
-
-
Craven, M.1
Shavlik, J.W.2
-
8
-
-
33646424350
-
An integrated approach to learning Bayesian networks of rules
-
Springer Berlin
-
Davis, J., Burnside, E. S., Dutra, I. C., Page, D., & Costa, V. S. (2005). An integrated approach to learning Bayesian networks of rules. In LNAI: Vol. 3720. Proc. ECML (pp. 84-95). Berlin: Springer.
-
(2005)
LNAI: Vol. 3720. Proc. ECML
, vol.3720
, pp. 84-95
-
-
Davis, J.1
Burnside, E.S.2
Dutra, I.C.3
Page, D.4
Costa, V.S.5
-
10
-
-
40349089023
-
-
Springer Berlin 10.1007/978-3-540-78652-8 1132.68007
-
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (2008). LNAI: Vol. 4911. Probabilistic inductive logic programming. Berlin: Springer.
-
(2008)
LNAI: Vol. 4911. Probabilistic Inductive Logic Programming
, vol.4911
-
-
De Raedt, L.1
Frasconi, P.2
Kersting, K.3
Muggleton, S.4
-
11
-
-
22944431848
-
Learning an approximation to inductive logic programming clause evaluation
-
Springer Berlin
-
DiMaio, F., & Shavlik, J. W. (2004). Learning an approximation to inductive logic programming clause evaluation. In LNAI: Vol. 3194. Proc. ILP (pp. 80-97). Berlin: Springer.
-
(2004)
LNAI: Vol. 3194. Proc. ILP
, pp. 80-97
-
-
Dimaio, F.1
Shavlik, J.W.2
-
12
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
10.1142/S0219720005001004 2159941
-
Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185-205.
-
(2005)
Journal of Bioinformatics and Computational Biology
, vol.3
, Issue.2
, pp. 185-205
-
-
Ding, C.1
Peng, H.2
-
14
-
-
0033164970
-
The connectionist inductive learning and logic programming system
-
10.1023/A:1008328630915
-
Garcez, A. S. D., & Zaverucha, G. (1999). The connectionist inductive learning and logic programming system. Applied Intelligence, 11, 59-77.
-
(1999)
Applied Intelligence
, vol.11
, pp. 59-77
-
-
Garcez, A.S.D.1
Zaverucha, G.2
-
15
-
-
84865094983
-
Multi-instance learning using recurrent neural networks
-
IEEE Press New York
-
Garcez, A. S. D., & Zaverucha, G. (2012). Multi-instance learning using recurrent neural networks. In Proc. IJCNN (pp. 1-6). New York: IEEE Press.
-
(2012)
Proc. IJCNN
, pp. 1-6
-
-
Garcez, A.S.D.1
Zaverucha, G.2
-
16
-
-
0035127989
-
Symbolic knowledge extraction from trained neural networks: A sound approach
-
10.1016/S0004-3702(00)00077-1 0969.68124 1805645
-
Garcez, A. S. D., Broda, K., & Gabbay, D. M. (2001). Symbolic knowledge extraction from trained neural networks: a sound approach. Artificial Intelligence, 125(1-2), 155-207.
-
(2001)
Artificial Intelligence
, vol.125
, Issue.1-2
, pp. 155-207
-
-
Garcez, A.S.D.1
Broda, K.2
Gabbay, D.M.3
-
20
-
-
79959430519
-
First-order logic learning in artificial neural networks
-
IEEE Press New York
-
Guillame-Bert, M., Broda, K., & Garcez, A. S. D. (2010). First-order logic learning in artificial neural networks. In Proc. IJCNN (pp. 1-8). New York: IEEE Press.
-
(2010)
Proc. IJCNN
, pp. 1-8
-
-
Guillame-Bert, M.1
Broda, K.2
Garcez, A.S.D.3
-
21
-
-
33745561205
-
An introduction to variable and feature selection
-
1102.68556
-
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
23
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
10.1016/0893-6080(88)90003-2
-
Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1(4), 295-307.
-
(1988)
Neural Networks
, vol.1
, Issue.4
, pp. 295-307
-
-
Jacobs, R.A.1
-
24
-
-
79959440216
-
First-order logical neural networks
-
1094.68078
-
Kijsirikul, B., & Lerdlamnaochai, B. K. (2005). First-order logical neural networks. International Journal of Hybrid Intelligent Systems, 2(4), 253-267.
-
(2005)
International Journal of Hybrid Intelligent Systems
, vol.2
, Issue.4
, pp. 253-267
-
-
Kijsirikul, B.1
Lerdlamnaochai, B.K.2
-
25
-
-
0000183134
-
Relating chemical activity to structure: An examination of ILP successes
-
10.1007/BF03037232
-
King, R. D., & Srinivasan, A. (1995). Relating chemical activity to structure: an examination of ILP successes. New Generation Computing, 13(3-4), 411-434.
-
(1995)
New Generation Computing
, vol.13
, Issue.3-4
, pp. 411-434
-
-
King, R.D.1
Srinivasan, A.2
-
26
-
-
1642336155
-
Functional genomic hypothesis generation and experimentation by a robot scientist
-
10.1038/nature02236
-
King, R. D., Whelan, K. E., Jones, F. M., Reiser, F. G. K., Bryant, C. H., Muggleton, S. H., Kell, D. B., & Oliver, S. G. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427(6971), 247-252.
-
(2004)
Nature
, vol.427
, Issue.6971
, pp. 247-252
-
-
King, R.D.1
Whelan, K.E.2
Jones, F.M.3
Reiser, F.G.K.4
Bryant, C.H.5
Muggleton, S.H.6
Kell, D.B.7
Oliver, S.G.8
-
28
-
-
1942515438
-
Propositionalization approaches to relational data mining
-
S. Džeroski (eds) Springer New York 10.1007/978-3-662-04599-2-11
-
Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Džeroski (Ed.), Relational data mining (pp. 262-291). New York: Springer.
-
(2001)
Relational Data Mining
, pp. 262-291
-
-
Kramer, S.1
Lavrač, N.2
Flach, P.3
-
29
-
-
22944469922
-
Facets of aggregation approaches to propositionalization
-
Springer Berlin
-
Krogel, M. A., & Wrobel, S. (2003). Facets of aggregation approaches to propositionalization. In LNAI: Vol. 2835. Proc. ILP (pp. 30-39). Berlin: Springer.
-
(2003)
LNAI: Vol. 2835. Proc. ILP
, vol.2835
, pp. 30-39
-
-
Krogel, M.A.1
Wrobel, S.2
-
30
-
-
9444220847
-
Comparative evaluation of approaches to propositionalization
-
Springer Berlin
-
Krogel, M. A., Rawles, S., Železný, F., Flach, P., Lavrač, N., & Wrobel, S. (2003). Comparative evaluation of approaches to propositionalization. In LNAI: Vol. 2835. Proc. ILP (pp. 197-214). Berlin: Springer.
-
(2003)
LNAI: Vol. 2835. Proc. ILP
, pp. 197-214
-
-
Krogel, M.A.1
Rawles, S.2
Železný, F.3
Flach, P.4
Lavrač, N.5
Wrobel, S.6
-
31
-
-
79958793910
-
Block-wise construction of tree-like relational features with monotone reducibility and redundancy
-
10.1007/s10994-010-5208-5 1237.68151 3108208
-
Kuželka, O., & Železný, F. (2011). Block-wise construction of tree-like relational features with monotone reducibility and redundancy. Machine Learning, 83, 163-192.
-
(2011)
Machine Learning
, vol.83
, pp. 163-192
-
-
Kuželka, O.1
Železný, F.2
-
32
-
-
33947212329
-
Integrating naive Bayes and FOIL
-
1222.68242
-
Landwehr, N., Kersting, K., & De Raedt, L. D. (2007). Integrating naive Bayes and FOIL. Journal of Machine Learning Research, 8, 481-507.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 481-507
-
-
Landwehr, N.1
Kersting, K.2
De Raedt, L.D.3
-
34
-
-
84863944042
-
Review of input variable selection methods for artificial neural networks
-
K. Suzuki (eds) InTech New York 10.5772/16004
-
May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. In K. Suzuki (Ed.), Artificial neural networks - methodological advances and biomedical applications (pp. 19-44). New York: InTech. doi: 10.5772/16004.
-
(2011)
Artificial Neural Networks - Methodological Advances and Biomedical Applications
, pp. 19-44
-
-
May, R.1
Dandy, G.2
Maier, H.3
-
35
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
10.1016/S0893-6080(05)80056-5
-
Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525-533.
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
36
-
-
77951503082
-
Inverse entailment and Progol
-
10.1007/BF03037227
-
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3-4), 245-286.
-
(1995)
New Generation Computing
, vol.13
, Issue.3-4
, pp. 245-286
-
-
Muggleton, S.1
-
37
-
-
0028429573
-
Inductive logic programming: Theory and methods
-
10.1016/0743-1066(94)90035-3
-
Muggleton, S., & De Raedt, L. D. (1994). Inductive logic programming: theory and methods. The Journal of Logic Programming, 19/20, 629-679.
-
(1994)
The Journal of Logic Programming
, vol.19-20
, pp. 629-679
-
-
Muggleton, S.1
De Raedt, L.D.2
-
38
-
-
37849037799
-
QG/GA: A stochastic search for Progol
-
10.1007/s10994-007-5029-3
-
Muggleton, S., & Tamaddoni-Nezhad, A. (2008). QG/GA: a stochastic search for Progol. Machine Learning, 70, 121-133.
-
(2008)
Machine Learning
, vol.70
, pp. 121-133
-
-
Muggleton, S.1
Tamaddoni-Nezhad, A.2
-
39
-
-
77955023450
-
Chess revision: Acquiring the rules of chess variants through FOL theory revision from examples
-
Springer Berlin
-
Muggleton, S., Paes, A., Costa, V. S., & Zaverucha, G. (2010). Chess revision: acquiring the rules of chess variants through FOL theory revision from examples. In LNAI: Vol. 5989. Proc. ILP (pp. 123-130). Berlin: Springer.
-
(2010)
LNAI: Vol. 5989. Proc. ILP
, pp. 123-130
-
-
Muggleton, S.1
Paes, A.2
Costa, V.S.3
Zaverucha, G.4
-
41
-
-
26944453186
-
Probabilistic first-order theory revision from examples
-
Springer Berlin
-
Paes, A., Revoredo, K., Zaverucha, G., & Costa, V. S. (2005). Probabilistic first-order theory revision from examples. In LNAI: Vol. 3625. Proc. ILP (pp. 295-311). Berlin: Springer.
-
(2005)
LNAI: Vol. 3625. Proc. ILP
, vol.3625
, pp. 295-311
-
-
Paes, A.1
Revoredo, K.2
Zaverucha, G.3
Costa, V.S.4
-
42
-
-
38049098082
-
ILP through propositionalization and stochastic k-term DNF learning
-
Springer Berlin
-
Paes, A., Železný, F., Zaverucha, G., Page, D., & Srinivasan, A. (2007). ILP through propositionalization and stochastic k-term DNF learning. In LNAI: Vol. 4455. Proc. ILP (pp. 379-393). Berlin: Springer.
-
(2007)
LNAI: Vol. 4455. Proc. ILP
, vol.4455
, pp. 379-393
-
-
Paes, A.1
Železný, F.2
Zaverucha, G.3
Page, D.4
Srinivasan, A.5
-
43
-
-
40249096014
-
Revising first-order logic theories from examples through stochastic local search
-
Springer Berlin
-
Paes, A., Zaverucha, G., & Costa, V. S. (2008). Revising first-order logic theories from examples through stochastic local search. In LNAI: Vol. 4894. Proc. ILP (pp. 200-210). Berlin: Springer.
-
(2008)
LNAI: Vol. 4894. Proc. ILP
, vol.4894
, pp. 200-210
-
-
Paes, A.1
Zaverucha, G.2
Costa, V.S.3
-
44
-
-
84883590863
-
Gene classification: Issues and challenges for relational learning
-
ACM Press New York 10.1145/1090193.1090204
-
Perlich, C., & Merugu, S. (2005). Gene classification: issues and challenges for relational learning. In Proc. 4th international workshop on multi-relational mining (pp. 61-67). New York: ACM Press.
-
(2005)
Proc. 4th International Workshop on Multi-relational Mining
, pp. 61-67
-
-
Perlich, C.1
Merugu, S.2
-
45
-
-
84864839459
-
Learning theories using estimation distribution algorithms and (reduced) bottom clauses
-
Springer Berlin
-
Pitangui, C. G., & Zaverucha, G. (2012). Learning theories using estimation distribution algorithms and (reduced) bottom clauses. In LNAI: Vol. 7207. Proc. ILP (pp. 286-301). Berlin: Springer.
-
(2012)
LNAI: Vol. 7207. Proc. ILP
, vol.7207
, pp. 286-301
-
-
Pitangui, C.G.1
Zaverucha, G.2
-
48
-
-
32044466073
-
Markov logic networks
-
10.1007/s10994-006-5833-1
-
Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107-136.
-
(2006)
Machine Learning
, vol.62
, pp. 107-136
-
-
Richardson, M.1
Domingos, P.2
-
49
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart J. L. McClelland (eds) MIT Press Cambridge
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: explorations in the microstructure of cognition (pp. 318-362). Cambridge: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
50
-
-
0028387050
-
The basic ideas in neural networks
-
10.1145/175247.175256
-
Rumelhart, D. E., Widrow, B., & Lehr, M. A. (1994). The basic ideas in neural networks. Communications of the ACM, 37(3), 87-92.
-
(1994)
Communications of the ACM
, vol.37
, Issue.3
, pp. 87-92
-
-
Rumelhart, D.E.1
Widrow, B.2
Lehr, M.A.3
-
51
-
-
84891372147
-
-
version 5. Accessed 27 March 2013
-
Srinivasan, A. (2007). The Aleph System, version 5. http://www.cs.ox.ac. uk/activities/machlearn/Aleph/aleph.html. Accessed 27 March 2013.
-
(2007)
The Aleph System
-
-
Srinivasan, A.1
-
52
-
-
0342280994
-
Mutagenesis: ILP experiments in a non-determinate biological domain
-
Springer Berlin
-
Srinivasan, A., & Muggleton, S. H. (1994). Mutagenesis: ILP experiments in a non-determinate biological domain. In LNAI: Vol. 237. Proc. ILP (pp. 217-232). Berlin: Springer.
-
(1994)
LNAI: Vol. 237. Proc. ILP
, vol.237
, pp. 217-232
-
-
Srinivasan, A.1
Muggleton, S.H.2
-
53
-
-
67649643792
-
The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause
-
10.1007/s10994-009-5117-7
-
Tamaddoni-Nezhad, A., & Muggleton, S. (2009). The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Machine Learning, 76(1), 37-72.
-
(2009)
Machine Learning
, vol.76
, Issue.1
, pp. 37-72
-
-
Tamaddoni-Nezhad, A.1
Muggleton, S.2
-
54
-
-
79958846424
-
Neural networks for relational learning: An experimental comparison
-
10.1007/s10994-010-5196-5 3108196
-
Uwents, W., Monfardini, G., Blockeel, H., Gori, M., & Scarselli, F. (2011). Neural networks for relational learning: an experimental comparison. Machine Learning, 82(3), 315-349.
-
(2011)
Machine Learning
, vol.82
, Issue.3
, pp. 315-349
-
-
Uwents, W.1
Monfardini, G.2
Blockeel, H.3
Gori, M.4
Scarselli, F.5
-
55
-
-
32144454875
-
Propositionalization-based relational subgroup discovery with RSD
-
10.1007/s10994-006-5834-0
-
Železný, F., & Lavrač, N. (2006). Propositionalization-based relational subgroup discovery with RSD. Machine Learning, 62, 33-63.
-
(2006)
Machine Learning
, vol.62
, pp. 33-63
-
-
Železný, F.1
Lavrač, N.2
|