메뉴 건너뛰기




Volumn 43, Issue 11, 2010, Pages 3712-3729

SVM-FuzCoC: A novel SVM-based feature selection method using a fuzzy complementary criterion

Author keywords

Feature redundancy; Feature selection; Fuzzy complementary criterion; Fuzzy sets; Support vector machines

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; FUZZY SETS; ITERATIVE METHODS; REDUNDANCY; SUPPORT VECTOR MACHINES;

EID: 78049340183     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.05.007     Document Type: Article
Times cited : (49)

References (48)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artif. Intell.97(1997)245-271.
    • (1997) Artif. Intell , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 2
    • 70350346892 scopus 로고
    • Pattern recognition and reduction of dimensionality\
    • P.R. Krishnaiah, L.N. Kanal (Eds.), North Holland
    • M. Ben-Bassat, Pattern recognition and reduction of dimensionality, in: P.R. Krishnaiah, L.N. Kanal (Eds.), Handbook of Statistics-II, North Holland, 1982, pp. 773-791.
    • (1982) Handbook of Statistics-II , pp. 773-791
    • Ben-Bassat, M.1
  • 3
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, D. Zongker, Feature selection: evaluation, application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell. 19 (2) (1997).
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.2
    • Jain, A.1    Zongker, D.2
  • 4
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, H. Liu, Feature selection for classification, Intell. Data Anal. 1 (3) (1997) 131-156.
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 6
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif. Intell. 97 (1-2)(1997) 273-324.
    • (1997) Artif. Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. (2003) 1157-1182.
    • (2003) J. Mach. Learn. Res. , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. (2005) 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 12
    • 34147206783 scopus 로고    scopus 로고
    • Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets
    • C.H. Ooi, M. Chetty, S.W. Teng, Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets, Data Min. Knowl. Discovery 114 (2007) 329-366.
    • (2007) Data Min. Knowl. Discovery , vol.114 , pp. 329-366
    • Ooi, C.H.1    Chetty, M.2    Teng, S.W.3
  • 13
    • 34548033746 scopus 로고    scopus 로고
    • Fuzzy feature selection based on min-max learning rule and extension matrix
    • Y. Li, Z.F. Wu, Fuzzy feature selection based on min-max learning rule and extension matrix, Pattern Recognition 41 (2008) 217-226.
    • (2008) Pattern Recognition , vol.41 , pp. 217-226
    • Li, Y.1    Wu, Z.F.2
  • 14
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection
    • K.Z. Mao, Orthogonal forward selection and backward elimination algorithms for feature subset selection, IEEE Trans. Syst. Man Cybern. B (2004) 629-634.
    • (2004) IEEE Trans. Syst. Man Cybern. B , pp. 629-634
    • Mao, K.Z.1
  • 15
    • 0037983742 scopus 로고    scopus 로고
    • Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance
    • X. Fu, L. Wang, Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance, IEEE Trans. Syst. Man Cybern. B (2003) 399-409.
    • (2003) IEEE Trans. Syst. Man Cybern. B , pp. 399-409
    • Fu, X.1    Wang, L.2
  • 16
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Springer, Berlin, Heidelberg
    • I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Machine Learning: ECML-94, Lecture Notes in Computer Science, vol. 784, Springer, Berlin, Heidelberg, 1994, pp. 171-182.
    • (1994) Machine Learning: ECML-94, Lecture Notes in Computer Science , vol.784 , pp. 171-182
    • Kononenko, I.1
  • 17
    • 38349093039 scopus 로고    scopus 로고
    • Constraint score: A new filter method for feature selection with pairwise constraints
    • D Zhang, S Chen, Z.-H Zhou, Constraint score: a new filter method for feature selection with pairwise constraints, Pattern Recognition 41 (5) (2008) 1440-1451.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.-H.3
  • 20
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • A.Y. Ng, On feature selection: learning with exponentially many irrelevant features as training examples, in: Proceedings of the 15th International Conference on Machine Learning, 1998, pp. 404-412.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 21
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. 26 (9) (1977) 917-922.
    • (1977) IEEE Trans. Comput , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 22
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, D. Zongker, Feature selection: evaluation, application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997) 153-158.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 25
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discovery 2 (2) (1998) 121-167.
    • (1998) Data Min. Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 27
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Chih-Wei Hsu, Chih-Jen Lin, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw. 13 (2) (2002) 415-425.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 29
    • 0035363671 scopus 로고    scopus 로고
    • Feature-level and decision-level fusion of non coincidently sampled sensors for land mine detection
    • A.H. Gunatilaka, B.A. Baertlein, Feature-level and decision-level fusion of non coincidently sampled sensors for land mine detection, IEEE Trans. Pattern Anal. Mach. Intell. 23 (6) (2001) 577-589.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , Issue.6 , pp. 577-589
    • Gunatilaka, A.H.1    Baertlein, B.A.2
  • 31
    • 0029247604 scopus 로고
    • Combining multiple neural networks by fuzzy integral for robust classification
    • S.-B. Cho, J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification, IEEE Trans. Syst. Man Cybern. 25 (2) (1995) 380-385.
    • (1995) IEEE Trans. Syst. Man Cybern , vol.25 , Issue.2 , pp. 380-385
    • Cho, S.-B.1    Kim, J.H.2
  • 32
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • L.I. Kuncheva, J.C. Bezdek, R. Duin, Decision templates for multiple classifier fusion: an experimental comparison, Pattern Recognition 34 (2001) 299-314.
    • (2001) Pattern Recognition , vol.34 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.3
  • 33
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, R.E. Shapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119-139.
    • (1997) J. Comput. Syst. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Shapire, R.E.2
  • 34
    • 0347411204 scopus 로고    scopus 로고
    • Combining boosting and evolutionary algorithms for learning of fuzzy classification rules
    • F. Hoffmann, Combining boosting and evolutionary algorithms for learning of fuzzy classification rules, Fuzzy Sets Syst. 14 (2004) 47-58.
    • (2004) Fuzzy Sets Syst , vol.14 , pp. 47-58
    • Hoffmann, F.1
  • 40
    • 20444447180 scopus 로고    scopus 로고
    • Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification
    • D. Li, W. Pedrycz, N.J. Pizzi, Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification, IEEE Trans. Biomed. Eng. vol. 52 (2005) 1132-1139.
    • (2005) IEEE Trans. Biomed. Eng , vol.52 , pp. 1132-1139
    • Li, D.1    Pedrycz, W.2    Pizzi, N.J.3
  • 41
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schurmans (Eds.)
    • J. Platt, Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, in: A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schurmans (Eds.), Advances in Large Margin Classifiers, pp. 61-74, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 42
    • 8644219554 scopus 로고    scopus 로고
    • Probabilistic SVM outputs for pattern recognition using analytical geometry
    • A. Madevska-Bogdanova, D. Nikolik, L. Curfs, Probabilistic SVM outputs for pattern recognition using analytical geometry, Neurocomputing 62 (1-4) (2004) 293-303.
    • (2004) Neurocomputing , vol.62 , Issue.1-4 , pp. 293-303
    • Madevska-Bogdanova, A.1    Nikolik, D.2    Curfs, L.3
  • 48
    • 0033315726 scopus 로고    scopus 로고
    • Improved mutual information feature selector for neural networks in supervised learning
    • Washington, DC, July
    • N. Kwak, C-H Choi, improved mutual information feature selector for neural networks in supervised learning, in: Proceedings of the Joint Conference on Neural Networks, Washington, DC, July 1999.
    • (1999) Proceedings of the Joint Conference on Neural Networks
    • Kwak, N.1    Choi, C.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.