-
1
-
-
84873186296
-
DREB1/CBF transcription factors: Their structure, function and role in abiotic stress tolerance in plants
-
Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J. P., Qureshi, M. I., and Singh, N. K. (2012). DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J. Genet. 91, 385-395. doi: 10.1007/s12041-012-0201-3.
-
(2012)
J. Genet
, vol.91
, pp. 385-395
-
-
Akhtar, M.1
Jaiswal, A.2
Taj, G.3
Jaiswal, J.P.4
Qureshi, M.I.5
Singh, N.K.6
-
2
-
-
80052429888
-
Plant heat-shock proteins: A mini review
-
Al-Whaibi, M. H. (2011). Plant heat-shock proteins: a mini review. J. King Saud Univ.-Sci. 23, 139-150. doi: 10.1016/j.jksus.2010.06.022.
-
(2011)
J. King Saud Univ.-Sci
, vol.23
, pp. 139-150
-
-
Al-Whaibi, M.H.1
-
3
-
-
19944429077
-
Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors
-
Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., et al. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471-487. doi: 10.1007/BF02712120.
-
(2004)
J. Biosci
, vol.29
, pp. 471-487
-
-
Baniwal, S.K.1
Bharti, K.2
Chan, K.Y.3
Fauth, M.4
Ganguli, A.5
Kotak, S.6
-
4
-
-
77949492929
-
The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis
-
Banti, V., Mafessoni, F., Loreti, E., Alpi, A., and Perata, P. (2010). The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152, 1471-1483. doi: 10.1104/pp.109.149815.
-
(2010)
Plant Physiol
, vol.152
, pp. 1471-1483
-
-
Banti, V.1
Mafessoni, F.2
Loreti, E.3
Alpi, A.4
Perata, P.5
-
5
-
-
14644430438
-
Drought and salt tolerance in plants
-
Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23-58. doi: 10.1080/07352680590910410.
-
(2005)
Crit. Rev. Plant Sci
, vol.24
, pp. 23-58
-
-
Bartels, D.1
Sunkar, R.2
-
6
-
-
84882435272
-
Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection
-
Bechtold, U., Albihlal, W. S., Lawson, T., Fryer, M. J., Sparrow, P. A., Richard, F., et al. (2013). Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J. Exp. Bot. 64, 3467-3481. doi: 10.1093/jxb/ert185.
-
(2013)
J. Exp. Bot
, vol.64
, pp. 3467-3481
-
-
Bechtold, U.1
Albihlal, W.S.2
Lawson, T.3
Fryer, M.J.4
Sparrow, P.A.5
Richard, F.6
-
7
-
-
2942633709
-
Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1
-
Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., et al. (2004). Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16, 1521-1535. doi: 10.1105/tpc.019927.
-
(2004)
Plant Cell
, vol.16
, pp. 1521-1535
-
-
Bharti, K.1
von Koskull-Döring, P.2
Bharti, S.3
Kumar, P.4
Tintschl-Körbitzer, A.5
Treuter, E.6
-
8
-
-
84900835896
-
Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops
-
Bita, C. E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops.Front. Plant Sci. 4:273. doi: 10.3389/fpls.2013.00273.
-
(2013)
Front. Plant Sci
, vol.4
, pp. 273
-
-
Bita, C.E.1
Gerats, T.2
-
9
-
-
84886266188
-
Novel perspectives for the engineering of abiotic stress tolerance in plants
-
Cabello, J. V., Lodeyro, A. F., and Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr. Opin. Biotechnol. 26, 62-70. doi: 10.1016/j.copbio.2013.09.011.
-
(2014)
Curr. Opin. Biotechnol
, vol.26
, pp. 62-70
-
-
Cabello, J.V.1
Lodeyro, A.F.2
Zurbriggen, M.D.3
-
10
-
-
0030035436
-
Multiple steps in the regulation of transcription-factor level and activity
-
Calkhoven, C., and Ab, G. (1996). Multiple steps in the regulation of transcription-factor level and activity. Biochem. J. 317, 329-342. doi: 10.1042/bj3170329.
-
(1996)
Biochem. J
, vol.317
, pp. 329-342
-
-
Calkhoven, C.1
Ab, G.2
-
11
-
-
84901775009
-
Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens
-
Chang, C. Y., Lin, W. D., and Tu, S. L. (2014). Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens. Plant Physiol. 165, 826-840. doi: 10.1104/pp.113.230540.
-
(2014)
Plant Physiol
, vol.165
, pp. 826-840
-
-
Chang, C.Y.1
Lin, W.D.2
Tu, S.L.3
-
12
-
-
68949135563
-
Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression
-
Chan-Schaminet, K. Y., Baniwal, S. K., Bublak, D., Nover, L., and Scharf, K. D. (2009). Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J. Biol. Chem. 284, 20848-20857. doi: 10.1074/jbc.M109.007336.
-
(2009)
J. Biol. Chem
, vol.284
, pp. 20848-20857
-
-
Chan-Schaminet, K.Y.1
Baniwal, S.K.2
Bublak, D.3
Nover, L.4
Scharf, K.D.5
-
13
-
-
33846345430
-
A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis
-
Charng, Y. Y., Liu, H. C., Liu, N. Y., Chi, W. T., Wang, C. N., Chang, S. H., et al. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262. doi: 10.1104/pp.106.091322.
-
(2007)
Plant Physiol
, vol.143
, pp. 251-262
-
-
Charng, Y.Y.1
Liu, H.C.2
Liu, N.Y.3
Chi, W.T.4
Wang, C.N.5
Chang, S.H.6
-
14
-
-
80053102383
-
Heat shock factors in rice (Oryza sativa L.): Genome-wide expression analysis during reproductive development and abiotic stress
-
Chauhan, H., Khurana, N., Agarwal, P., and Khurana, P. (2011). Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genomics 286, 171-187. doi: 10.1007/s00438-011-0638-8.
-
(2011)
Mol. Genet. Genomics
, vol.286
, pp. 171-187
-
-
Chauhan, H.1
Khurana, N.2
Agarwal, P.3
Khurana, P.4
-
15
-
-
0036845912
-
Global and hormone-induced gene expression changes during shoot development in Arabidopsis
-
Che, P., Gingerich, D. J., Lall, S., and Howell, S. H. (2002). Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14, 2771-2785. doi: 10.1105/tpc.006668.
-
(2002)
Plant Cell
, vol.14
, pp. 2771-2785
-
-
Che, P.1
Gingerich, D.J.2
Lall, S.3
Howell, S.H.4
-
16
-
-
84924228778
-
An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice
-
Cheng, Q., Zhou, Y., Liu, Z., Zhang, L., Song, G., Guo, Z., et al. (2015). An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol. 17, 419-429. doi: 10.1111/plb.12267.
-
(2015)
Plant Biol
, vol.17
, pp. 419-429
-
-
Cheng, Q.1
Zhou, Y.2
Liu, Z.3
Zhang, L.4
Song, G.5
Guo, Z.6
-
17
-
-
77955717340
-
Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance
-
Cohen-Peer, R., Schuster, S., Meiri, D., Breiman, A., and Avni, A. (2010). Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol. Biol. 74, 33-45. doi: 10.1007/s11103-010-9652-1.
-
(2010)
Plant Mol. Biol
, vol.74
, pp. 33-45
-
-
Cohen-Peer, R.1
Schuster, S.2
Meiri, D.3
Breiman, A.4
Avni, A.5
-
18
-
-
84898058255
-
Interaction between salt and heat stress: When two wrongs make a right
-
Colmenero-Flores, J. M., and Rosales, M. A. (2014). Interaction between salt and heat stress: when two wrongs make a right. Plant Cell Environ. 37, 1042-1045. doi: 10.1111/pce.12229.
-
(2014)
Plant Cell Environ
, vol.37
, pp. 1042-1045
-
-
Colmenero-Flores, J.M.1
Rosales, M.A.2
-
19
-
-
0033815072
-
Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential
-
Czarnecka-Verner, E., Yuan, C. X., Scharf, K. D., Englich, G., and Gurley, W. B. (2000). Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol. Biol. 43, 459-471. doi: 10.1023/A:1006448607740.
-
(2000)
Plant Mol. Biol
, vol.43
, pp. 459-471
-
-
Czarnecka-Verner, E.1
Yuan, C.X.2
Scharf, K.D.3
Englich, G.4
Gurley, W.B.5
-
20
-
-
0034143313
-
The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2
-
Döring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A., and Nover, L. (2000). The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12, 265-278. doi: 10.1105/tpc.12.2.265.
-
(2000)
Plant Cell
, vol.12
, pp. 265-278
-
-
Döring, P.1
Treuter, E.2
Kistner, C.3
Lyck, R.4
Chen, A.5
Nover, L.6
-
21
-
-
84877120476
-
Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2
-
Evrard, A., Kumar, M., Lecourieux, D., Lucks, J., von Koskull-Döring, P., and Hirt, H. (2013). Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J. 1, e59. doi: 10.7717/peerj.59.
-
(2013)
Peer J
, vol.1
-
-
Evrard, A.1
Kumar, M.2
Lecourieux, D.3
Lucks, J.4
von Koskull-Döring, P.5
Hirt, H.6
-
22
-
-
0036671216
-
Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway
-
Fowler, S., and Thomashow, M. F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675-1690. doi: 10.1105/tpc.003483.
-
(2002)
Plant Cell
, vol.14
, pp. 1675-1690
-
-
Fowler, S.1
Thomashow, M.F.2
-
23
-
-
84938637176
-
Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks
-
Fragkostefanakis, S., Röth, S., Schleiff, E., and Scharf, K. D. (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ. 38, 1881-1895. doi: 10.1111/pce.12396.
-
(2015)
Plant Cell Environ
, vol.38
, pp. 1881-1895
-
-
Fragkostefanakis, S.1
Röth, S.2
Schleiff, E.3
Scharf, K.D.4
-
24
-
-
84923607036
-
Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana
-
Giesguth, M., Sahm, A., Simon, S., and Dietz, K. J. (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett. 589, 718-725. doi: 10.1016/j.febslet.2015.01.039.
-
(2015)
FEBS Lett
, vol.589
, pp. 718-725
-
-
Giesguth, M.1
Sahm, A.2
Simon, S.3
Dietz, K.J.4
-
25
-
-
84869172142
-
Heat shock transcriptional factors in Malus domestica: Identification, classification and expression analysis
-
Giorno, F., Guerriero, G., Baric, S., and Mariani, C. (2012). Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13:639. doi: 10.1186/1471-2164-13-639.
-
(2012)
BMC Genomics
, vol.13
, pp. 639
-
-
Giorno, F.1
Guerriero, G.2
Baric, S.3
Mariani, C.4
-
26
-
-
74249106693
-
Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers
-
Giorno, F., Wolters-Arts, M., Grillo, S., Scharf, K. D., Vriezen, W. H., and Mariani, C. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61, 453-462. doi: 10.1093/jxb/erp316.
-
(2010)
J. Exp. Bot
, vol.61
, pp. 453-462
-
-
Giorno, F.1
Wolters-Arts, M.2
Grillo, S.3
Scharf, K.D.4
Vriezen, W.H.5
Mariani, C.6
-
27
-
-
84906262600
-
LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana
-
Gong, B., Yi, J., Wu, J., Sui, J., Khan, M. A., Wu, Z., et al. (2014). LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Rep. 33, 1519-1533. doi: 10.1007/s00299-014-1635-2.
-
(2014)
Plant Cell Rep
, vol.33
, pp. 1519-1533
-
-
Gong, B.1
Yi, J.2
Wu, J.3
Sui, J.4
Khan, M.A.5
Wu, Z.6
-
28
-
-
0033279841
-
Transport between the cell nucleus and the cytoplasm
-
Görlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607-660. doi: 10.1146/annurev.cellbio.15.1.607.
-
(1999)
Annu. Rev. Cell Dev. Biol
, vol.15
, pp. 607-660
-
-
Görlich, D.1
Kutay, U.2
-
29
-
-
84923226076
-
Post-transcriptional and post-translational regulations of drought and heat response in plants: A spider's web of mechanisms
-
Guerra, D., Crosatti, C., Khoshro, H. H., Mastrangelo, A. M., Mica, E., and Mazzucotelli, E. (2015). Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. Front Plant Sci. 6:57. doi: 10.3389/fpls.2015.00057.
-
(2015)
Front Plant Sci
, vol.6
, pp. 57
-
-
Guerra, D.1
Crosatti, C.2
Khoshro, H.H.3
Mastrangelo, A.M.4
Mica, E.5
Mazzucotelli, E.6
-
30
-
-
84931082882
-
Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.)
-
Guo, M., Lu, J. P., Zhai, Y. F., Chai, W. G., Gong, Z. H., and Lu, M. H. (2015). Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 15:151. doi: 10.1186/s12870-015-0512-7.
-
(2015)
BMC Plant Biol
, vol.15
, pp. 151
-
-
Guo, M.1
Lu, J.P.2
Zhai, Y.F.3
Chai, W.G.4
Gong, Z.H.5
Lu, M.H.6
-
31
-
-
36048931817
-
Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, inMedicago sativa
-
He, Z. S., Xie, R., Zou, H. S., Wang, Y. Z., Zhu, J. B., and Yu, G. Q. (2007). Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, inMedicago sativa. Biochem. Biophys. Res. Commun. 364, 1056-1061. doi: 10.1016/j.bbrc.2007.10.131.
-
(2007)
Biochem. Biophys. Res. Commun
, vol.364
, pp. 1056-1061
-
-
He, Z.S.1
Xie, R.2
Zou, H.S.3
Wang, Y.Z.4
Zhu, J.B.5
Yu, G.Q.6
-
32
-
-
0035138160
-
The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2
-
Heerklotz, D., Döring, P., Bonzelius, F., Winkelhaus, S., and Nover, L. (2001). The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol. Cell. Biol. 21, 1759-1768. doi: 10.1128/MCB.21.5.1759-1768.2001.
-
(2001)
Mol. Cell. Biol
, vol.21
, pp. 1759-1768
-
-
Heerklotz, D.1
Döring, P.2
Bonzelius, F.3
Winkelhaus, S.4
Nover, L.5
-
33
-
-
84942858700
-
Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca
-
Hu, Y., Han, Y. T., Wei, W., Li, Y. J., Zhang, K., Gao, Y. R., et al. (2015). Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Front. Plant Sci. 6:736. doi: 10.3389/fpls.2015.00736.
-
(2015)
Front. Plant Sci
, vol.6
, pp. 736
-
-
Hu, Y.1
Han, Y.T.2
Wei, W.3
Li, Y.J.4
Zhang, K.5
Gao, Y.R.6
-
34
-
-
84925943410
-
Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)
-
Huang, X. Y., Tao, P., Li, B. Y., Wang, W. H., Yue, Z. C., Lei, J. L., et al. (2015a). Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis). Genet. Mol. Res. 14, 2189-2204. doi: 10.4238/2015.March.27.5.
-
(2015)
Genet. Mol. Res
, vol.14
, pp. 2189-2204
-
-
Huang, X.Y.1
Tao, P.2
Li, B.Y.3
Wang, W.H.4
Yue, Z.C.5
Lei, J.L.6
-
35
-
-
84938419220
-
Heat shock factors in carrot: Genome-wide identification, classification, and expression profiles response to abiotic stress
-
Huang, Y., Li, M. Y., Wang, F., Xu, Z. S., Huang, W., Wang, G. L., et al. (2015b). Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol. Biol. Rep. 42, 893-905. doi: 10.1007/s11033-014-3826-x.
-
(2015)
Mol. Biol. Rep
, vol.42
, pp. 893-905
-
-
Huang, Y.1
Li, M.Y.2
Wang, F.3
Xu, Z.S.4
Huang, W.5
Wang, G.L.6
-
36
-
-
80455140394
-
Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance
-
Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243-1254. doi: 10.1104/pp.111.179036.
-
(2011)
Plant Physiol
, vol.157
, pp. 1243-1254
-
-
Ikeda, M.1
Mitsuda, N.2
Ohme-Takagi, M.3
-
37
-
-
66149083210
-
A novel group of transcriptional repressors in Arabidopsis
-
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 50, 970-975. doi: 10.1093/pcp/pcp048.
-
(2009)
Plant Cell Physiol
, vol.50
, pp. 970-975
-
-
Ikeda, M.1
Ohme-Takagi, M.2
-
38
-
-
84885402965
-
Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms
-
Jorgensen, R. A., and Dorantes-Acosta, A. E. (2012). Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Front. Plant Sci. 3:191. doi: 10.3389/fpls.2012.00191.
-
(2012)
Front. Plant Sci
, vol.3
, pp. 191
-
-
Jorgensen, R.A.1
Dorantes-Acosta, A.E.2
-
39
-
-
2942664616
-
Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization
-
Kotak, S., Port, M., Ganguli, A., Bicker, F., and Koskull-Döring, V. (2004). Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 39, 98-112. doi: 10.1111/j.1365-313X.2004.02111.x.
-
(2004)
Plant J
, vol.39
, pp. 98-112
-
-
Kotak, S.1
Port, M.2
Ganguli, A.3
Bicker, F.4
Koskull-Döring, V.5
-
40
-
-
34248207000
-
A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis
-
Kotak, S., Vierling, E., Bäumlein, H., and von Koskull-Döring, P. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195. doi: 10.1105/tpc.106.048165.
-
(2007)
Plant Cell
, vol.19
, pp. 182-195
-
-
Kotak, S.1
Vierling, E.2
Bäumlein, H.3
von Koskull-Döring, P.4
-
41
-
-
80054106797
-
Role of DREBs in regulation of abiotic stress responses in plants
-
Lata, C., and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62, 4731-4748. doi: 10.1093/jxb/err210.
-
(2011)
J. Exp. Bot
, vol.62
, pp. 4731-4748
-
-
Lata, C.1
Prasad, M.2
-
42
-
-
0029379547
-
Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis
-
Lee, J. H., Hübel, A., and Schöffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8, 603-612. doi: 10.1046/j.1365-313X.1995.8040603.x.
-
(1995)
Plant J
, vol.8
, pp. 603-612
-
-
Lee, J.H.1
Hübel, A.2
Schöffl, F.3
-
43
-
-
84933038898
-
Functional characterization of a grape heat stress transcription factor VvHsfA9 in transgenicArabidopsis
-
Li, Z., Tian, Y., Zhao, W., Xu, J., Wang, L., Peng, R., et al. (2015). Functional characterization of a grape heat stress transcription factor VvHsfA9 in transgenicArabidopsis. Acta Physiol. Plant 37, 1-10. doi: 10.1007/s11738-015-1884-x.
-
(2015)
Acta Physiol. Plant
, vol.37
, pp. 1-10
-
-
Li, Z.1
Tian, Y.2
Zhao, W.3
Xu, J.4
Wang, L.5
Peng, R.6
-
44
-
-
84872825395
-
Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis
-
Li, Z., Zhang, L., Wang, A., Xu, X., and Li, J. (2013). Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE 8:e54880. doi: 10.1371/journal.pone.0054880.
-
(2013)
PLoS ONE
, vol.8
-
-
Li, Z.1
Zhang, L.2
Wang, A.3
Xu, X.4
Li, J.5
-
45
-
-
79251548912
-
Genome-wide identification, classification and analysis of heat shock transcription factor family in maize
-
Lin, Y. X., Jiang, H. Y., Chu, Z. X., Tang, X. L., Zhu, S. W., and Cheng, B. J. (2011). Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12:76. doi: 10.1186/1471-2164-12-76.
-
(2011)
BMC Genomics
, vol.12
, pp. 76
-
-
Lin, Y.X.1
Jiang, H.Y.2
Chu, Z.X.3
Tang, X.L.4
Zhu, S.W.5
Cheng, B.J.6
-
46
-
-
84883206923
-
Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development
-
Liu, H. C., and Charng, Y. Y. (2013). Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol. 163, 276-290. doi: 10.1104/pp.113.221168.
-
(2013)
Plant Physiol
, vol.163
, pp. 276-290
-
-
Liu, H.C.1
Charng, Y.Y.2
-
47
-
-
79953315560
-
The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis
-
Liu, H. C., Liao, H. T., and Charng, Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738-751. doi: 10.1111/j.1365-3040.2011.02278.x.
-
(2011)
Plant Cell Environ
, vol.34
, pp. 738-751
-
-
Liu, H.C.1
Liao, H.T.2
Charng, Y.Y.3
-
48
-
-
84877075283
-
An autoregulatory loop controlling Arabidopsis HsfA2 expression: Role of heat shock-induced alternative splicing
-
Liu, J., Sun, N., Liu, M., Liu, J., Du, B., Wang, X., et al. (2013). An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol. 162, 512-521. doi: 10.1104/pp.112.205864.
-
(2013)
Plant Physiol
, vol.162
, pp. 512-521
-
-
Liu, J.1
Sun, N.2
Liu, M.3
Liu, J.4
Du, B.5
Wang, X.6
-
49
-
-
84951813552
-
Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress
-
Liu, Z. W., Wu, Z. J., Li, X. H., Huang, Y., Li, H., Wang, Y. X., et al. (2016). Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576, 52-59. doi: 10.1016/j.gene.2015.09.076.
-
(2016)
Gene
, vol.576
, pp. 52-59
-
-
Liu, Z.W.1
Wu, Z.J.2
Li, X.H.3
Huang, Y.4
Li, H.5
Wang, Y.X.6
-
50
-
-
1542374539
-
Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis
-
Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., and Schöffl, F. (2004). Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol. Genet. Genomics 271, 11-21. doi: 10.1007/s00438-003-0954-8.
-
(2004)
Mol. Genet. Genomics
, vol.271
, pp. 11-21
-
-
Lohmann, C.1
Eggers-Schumacher, G.2
Wunderlich, M.3
Schöffl, F.4
-
51
-
-
84955407098
-
CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.)
-
Ma, H., Wang, C., Yang, B., Cheng, H., Wang, Z., Mijiti, A., et al. (2016). CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol. Biol. Report. 34, 1-14. doi: 10.1007/s11105-015-0892-8.
-
(2016)
Plant Mol. Biol. Report
, vol.34
, pp. 1-14
-
-
Ma, H.1
Wang, C.2
Yang, B.3
Cheng, H.4
Wang, Z.5
Mijiti, A.6
-
52
-
-
67651216183
-
Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs
-
Meiri, D., and Breiman, A. (2009). Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J. 59, 387-399. doi: 10.1111/j.1365-313X.2009.03878.x.
-
(2009)
Plant J
, vol.59
, pp. 387-399
-
-
Meiri, D.1
Breiman, A.2
-
53
-
-
72149130543
-
Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance
-
Meiri, D., Tazat, K., Cohen-Peer, R., Farchi-Pisanty, O., Aviezer-Hagai, K., Avni, A., et al. (2010). Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol. Biol. 72, 191-203. doi: 10.1007/s11103-009-9561-3.
-
(2010)
Plant Mol. Biol
, vol.72
, pp. 191-203
-
-
Meiri, D.1
Tazat, K.2
Cohen-Peer, R.3
Farchi-Pisanty, O.4
Aviezer-Hagai, K.5
Avni, A.6
-
54
-
-
0037097984
-
In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato
-
Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., et al. (2002). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555-1567. doi: 10.1101/gad.228802.
-
(2002)
Genes Dev
, vol.16
, pp. 1555-1567
-
-
Mishra, S.K.1
Tripp, J.2
Winkelhaus, S.3
Tschiersch, B.4
Theres, K.5
Nover, L.6
-
55
-
-
67649506184
-
Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses
-
Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., and Grover, A. (2009). Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol. Biochem. 47, 785-795. doi: 10.1016/j.plaphy.2009.05.003.
-
(2009)
Plant Physiol. Biochem
, vol.47
, pp. 785-795
-
-
Mittal, D.1
Chakrabarti, S.2
Sarkar, A.3
Singh, A.4
Grover, A.5
-
56
-
-
30144445464
-
Abiotic stress, the field environment and stress combination
-
Mittler, R. (2006). Abiotic stress, the field environment and stress combination.Trends Plant Sci. 11, 15-19. doi: 10.1016/j.tplants.2005.11.002.
-
(2006)
Trends Plant Sci
, vol.11
, pp. 15-19
-
-
Mittler, R.1
-
57
-
-
0032862606
-
New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4
-
Nakai, A. (1999). New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 4, 86-93.
-
(1999)
Cell Stress Chaperones
, vol.4
, pp. 86-93
-
-
Nakai, A.1
-
58
-
-
58449091869
-
Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses
-
Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88-95. doi: 10.1104/pp.108.129791.
-
(2009)
Plant Physiol
, vol.149
, pp. 88-95
-
-
Nakashima, K.1
Ito, Y.2
Yamaguchi-Shinozaki, K.3
-
59
-
-
84856594358
-
NAC transcription factors in plant abiotic stress responses
-
Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819, 97-103. doi: 10.1016/j.bbagrm.2011.10.005.
-
(2012)
Biochimica et Biophysica Acta
, vol.1819
, pp. 97-103
-
-
Nakashima, K.1
Takasaki, H.2
Mizoi, J.3
Shinozaki, K.4
Yamaguchi-Shinozaki, K.5
-
60
-
-
33750551504
-
Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress
-
Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K., and Shigeoka, S. (2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547. doi: 10.1111/j.1365-313X.2006.02889.x.
-
(2006)
Plant J
, vol.48
, pp. 535-547
-
-
Nishizawa, A.1
Yabuta, Y.2
Yoshida, E.3
Maruta, T.4
Yoshimura, K.5
Shigeoka, S.6
-
61
-
-
79956146758
-
HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress
-
Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., et al. (2011). HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52, 933-945. doi: 10.1093/pcp/pcr045.
-
(2011)
Plant Cell Physiol
, vol.52
, pp. 933-945
-
-
Nishizawa-Yokoi, A.1
Nosaka, R.2
Hayashi, H.3
Tainaka, H.4
Maruta, T.5
Tamoi, M.6
-
62
-
-
77949393599
-
The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress
-
Nishizawa-Yokoi, A., Tainaka, H., Yoshida, E., Tamoi, M., Yabuta, Y., and Shigeoka, S. (2010). The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant Cell Physiol. 51, 486-496. doi: 10.1093/pcp/pcq015.
-
(2010)
Plant Cell Physiol
, vol.51
, pp. 486-496
-
-
Nishizawa-Yokoi, A.1
Tainaka, H.2
Yoshida, E.3
Tamoi, M.4
Yabuta, Y.5
Shigeoka, S.6
-
63
-
-
0034804489
-
Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?
-
Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A., and Scharf, K. D. (2001).Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177-189. doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2.
-
(2001)
Cell Stress Chaperones
, vol.6
, pp. 177-189
-
-
Nover, L.1
Bharti, K.2
Döring, P.3
Mishra, S.K.4
Ganguli, A.5
Scharf, K.D.6
-
64
-
-
0030320512
-
The Hsf world: Classification and properties of plant heat stress transcription factors
-
Nover, L., Scharf, K. D., Gagliardi, D., Vergne, P., Czarnecka-Verner, E., and Gurley, W. B. (1996). The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1, 215-223.
-
(1996)
Cell Stress Chaperones
, vol.1
, pp. 215-223
-
-
Nover, L.1
Scharf, K.D.2
Gagliardi, D.3
Vergne, P.4
Czarnecka-Verner, E.5
Gurley, W.B.6
-
65
-
-
35848954743
-
High-level overexpression of theArabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth
-
Ogawa, D., Yamaguchi, K., and Nishiuchi, T. (2007). High-level overexpression of theArabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58, 3373-3383. doi: 10.1093/jxb/erm184.
-
(2007)
J. Exp. Bot
, vol.58
, pp. 3373-3383
-
-
Ogawa, D.1
Yamaguchi, K.2
Nishiuchi, T.3
-
66
-
-
84862777553
-
The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition
-
Pajerowska-Mukhtar, K. M., Wang, W., Tada, Y., Oka, N., Tucker, C. L., Fonseca, J. P., et al. (2012). The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr. Biol. 22, 103-112. doi: 10.1016/j.cub.2011.12.015.
-
(2012)
Curr. Biol
, vol.22
, pp. 103-112
-
-
Pajerowska-Mukhtar, K.M.1
Wang, W.2
Tada, Y.3
Oka, N.4
Tucker, C.L.5
Fonseca, J.P.6
-
67
-
-
84872177334
-
A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses
-
Peng, S., Zhu, Z., Zhao, K., Shi, J., Yang, Y., He, M., et al. (2013). A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses. Plant Mol. Biol. Report. 31, 240-247. doi: 10.1007/s11105-012-0463-1.
-
(2013)
Plant Mol. Biol. Report
, vol.31
, pp. 240-247
-
-
Peng, S.1
Zhu, Z.2
Zhao, K.3
Shi, J.4
Yang, Y.5
He, M.6
-
68
-
-
69949128349
-
BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance
-
Perez, D. E., Hoyer, J. S., Johnson, A. I., Moody, Z. R., Lopez, J., and Kaplinsky, N. J. (2009). BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol. 151, 241-252. doi: 10.1104/pp.109.142125.
-
(2009)
Plant Physiol
, vol.151
, pp. 241-252
-
-
Perez, D.E.1
Hoyer, J.S.2
Johnson, A.I.3
Moody, Z.R.4
Lopez, J.5
Kaplinsky, N.J.6
-
69
-
-
84899875638
-
The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6
-
Pérez-Salamó, I., Papdi, C., Rigó, G., Zsigmond, L., Vilela, B., Lumbreras, V., et al. (2014). The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 165, 319-334. doi: 10.1104/pp.114.237891.
-
(2014)
Plant Physiol
, vol.165
, pp. 319-334
-
-
Pérez-Salamó, I.1
Papdi, C.2
Rigó, G.3
Zsigmond, L.4
Vilela, B.5
Lumbreras, V.6
-
70
-
-
84897424823
-
Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress
-
Personat, J. M., Tejedor-Cano, J., Prieto-Dapena, P., Almoguera, C., and Jordano, J. (2014). Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biol. 14:56. doi: 10.1186/1471-2229-14-56.
-
(2014)
BMC Plant Biol
, vol.14
, pp. 56
-
-
Personat, J.M.1
Tejedor-Cano, J.2
Prieto-Dapena, P.3
Almoguera, C.4
Jordano, J.5
-
71
-
-
3543043796
-
Role of Hsp17. 4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2
-
Port, M., Tripp, J., Zielinski, D., Weber, C., Heerklotz, D., Winkelhaus, S., et al. (2004). Role of Hsp17. 4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol. 135, 1457-1470. doi: 10.1104/pp.104.042820.
-
(2004)
Plant Physiol
, vol.135
, pp. 1457-1470
-
-
Port, M.1
Tripp, J.2
Zielinski, D.3
Weber, C.4
Heerklotz, D.5
Winkelhaus, S.6
-
72
-
-
0031842946
-
HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants
-
Prändl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schöffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen. Genet. 258, 269-278. doi: 10.1007/s004380050731.
-
(1998)
Mol Gen. Genet
, vol.258
, pp. 269-278
-
-
Prändl, R.1
Hinderhofer, K.2
Eggers-Schumacher, G.3
Schöffl, F.4
-
73
-
-
84861894223
-
NAC proteins: Regulation and role in stress tolerance
-
Puranik, S., Sahu, P. P., Srivastava, P. S., and Prasad, M. (2012). NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369-381. doi: 10.1016/j.tplants.2012.02.004.
-
(2012)
Trends Plant Sci
, vol.17
, pp. 369-381
-
-
Puranik, S.1
Sahu, P.P.2
Srivastava, P.S.3
Prasad, M.4
-
74
-
-
84938862728
-
Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species
-
Qiao, X., Li, M., Li, L., Yin, H., Wu, J., and Zhang, S. (2015). Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol. 15:12. doi: 10.1186/s12870-014-0401-5.
-
(2015)
BMC Plant Biol
, vol.15
, pp. 12
-
-
Qiao, X.1
Li, M.2
Li, L.3
Yin, H.4
Wu, J.5
Zhang, S.6
-
75
-
-
77957270749
-
Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression
-
Sakurai, H., and Enoki, Y. (2010). Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J. 277, 4140-4149. doi: 10.1111/j.1742-4658.2010.07829.x.
-
(2010)
FEBS J
, vol.277
, pp. 4140-4149
-
-
Sakurai, H.1
Enoki, Y.2
-
76
-
-
0032127939
-
Negative regulation of the heat shock transcriptional response by HSBP1
-
Satyal, S. H., Chen, D., Fox, S. G., Kramer, J. M., and Morimoto, R. I. (1998). Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 12, 1962-1974. doi: 10.1101/gad.12.13.1962.
-
(1998)
Genes Dev
, vol.12
, pp. 1962-1974
-
-
Satyal, S.H.1
Chen, D.2
Fox, S.G.3
Kramer, J.M.4
Morimoto, R.I.5
-
77
-
-
84856613886
-
The plant heat stress transcription factor (Hsf) family: Structure, function and evolution
-
Scharf, K. D., Berberich, T., Ebersberger, I., and Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta 1819, 104-119. doi: 10.1016/j.bbagrm.2011.10.002.
-
(2012)
Biochimica et Biophysica Acta
, vol.1819
, pp. 104-119
-
-
Scharf, K.D.1
Berberich, T.2
Ebersberger, I.3
Nover, L.4
-
78
-
-
0031948387
-
The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules
-
Scharf, K. D., Heider, H., Höhfeld, I., Lyck, R., Schmidt, E., and Nover, L. (1998). The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol. 18, 2240-2251. doi: 10.1128/MCB.18.4.2240.
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 2240-2251
-
-
Scharf, K.D.1
Heider, H.2
Höhfeld, I.3
Lyck, R.4
Schmidt, E.5
Nover, L.6
-
79
-
-
33646346645
-
The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis
-
Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., and von Koskull-Döring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 60, 759-772. doi: 10.1007/s11103-005-5750-x.
-
(2006)
Plant Mol. Biol
, vol.60
, pp. 759-772
-
-
Schramm, F.1
Ganguli, A.2
Kiehlmann, E.3
Englich, G.4
Walch, D.5
von Koskull-Döring, P.6
-
80
-
-
84905002128
-
A step towards understanding plant responses to multiple environmental stresses: A genome-wide study
-
Sewelam, N., Oshima, Y., Mitsuda, N., and Ohme-Takagi, M. (2014). A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ. 37, 2024-2035. doi: 10.1111/pce.12274.
-
(2014)
Plant Cell Environ
, vol.37
, pp. 2024-2035
-
-
Sewelam, N.1
Oshima, Y.2
Mitsuda, N.3
Ohme-Takagi, M.4
-
81
-
-
75649125258
-
Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice
-
Shim, D., Hwang, J. U., Lee, J., Lee, S., Choi, Y., An, G., et al. (2009). Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21, 4031-4043. doi: 10.1105/tpc.109.066902.
-
(2009)
Plant Cell
, vol.21
, pp. 4031-4043
-
-
Shim, D.1
Hwang, J.U.2
Lee, J.3
Lee, S.4
Choi, Y.5
An, G.6
-
82
-
-
84868346072
-
Acquired thermotolerance in plants
-
Song, L., Jiang, Y., Zhao, H., and Hou, M. (2012). Acquired thermotolerance in plants.Plant Cell Tissue Organ Cult. 111, 265-276. doi: 10.1007/s11240-012-0198-6.
-
(2012)
Plant Cell Tissue Organ Cult
, vol.111
, pp. 265-276
-
-
Song, L.1
Jiang, Y.2
Zhao, H.3
Hou, M.4
-
83
-
-
64749086697
-
The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis
-
Sugio, A., Dreos, R., Aparicio, F., and Maule, A. J. (2009). The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21, 642-654. doi: 10.1105/tpc.108.062596.
-
(2009)
Plant Cell
, vol.21
, pp. 642-654
-
-
Sugio, A.1
Dreos, R.2
Aparicio, F.3
Maule, A.J.4
-
84
-
-
34250623291
-
Legume transcription factors: Global regulators of plant development and response to the environment
-
Udvardi, M. K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., et al. (2007). Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol. 144, 538-549. doi: 10.1104/pp.107.098061.
-
(2007)
Plant Physiol
, vol.144
, pp. 538-549
-
-
Udvardi, M.K.1
Kakar, K.2
Wandrey, M.3
Montanari, O.4
Murray, J.5
Andriankaja, A.6
-
85
-
-
84885829395
-
Regulation of plant translation by upstream open reading frames
-
von Arnim, A. G., Jia, Q., and Vaughn, J. N. (2014). Regulation of plant translation by upstream open reading frames. Plant Sci. 214, 1-12. doi: 10.1016/j.plantsci.2013.09.006.
-
(2014)
Plant Sci
, vol.214
, pp. 1-12
-
-
von Arnim, A.G.1
Jia, Q.2
Vaughn, J.N.3
-
86
-
-
34648830573
-
The diversity of plant heat stress transcription factors
-
von Koskull-Döring, P., Scharf, K. D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452-457. doi: 10.1016/j.tplants.2007.08.014.
-
(2007)
Trends Plant Sci
, vol.12
, pp. 452-457
-
-
von Koskull-Döring, P.1
Scharf, K.D.2
Nover, L.3
-
87
-
-
84920791941
-
Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum)
-
Wang, J., Sun, N., Deng, T., Zhang, L., and Zuo, K. (2014). Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics 15:961. doi: 10.1186/1471-2164-15-961.
-
(2014)
BMC Genomics
, vol.15
, pp. 961
-
-
Wang, J.1
Sun, N.2
Deng, T.3
Zhang, L.4
Zuo, K.5
-
88
-
-
2442445139
-
Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response
-
Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244-252. doi: 10.1016/j.tplants.2004.03.006.
-
(2004)
Trends Plant Sci
, vol.9
, pp. 244-252
-
-
Wang, W.1
Vinocur, B.2
Shoseyov, O.3
Altman, A.4
-
89
-
-
84904556580
-
Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA
-
Wunderlich, M., Gross-Hardt, R., and Schöffl, F. (2014). Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol. Biol. 85, 541-550. doi: 10.1007/s11103-014-0202-0.
-
(2014)
Plant Mol. Biol
, vol.85
, pp. 541-550
-
-
Wunderlich, M.1
Gross-Hardt, R.2
Schöffl, F.3
-
90
-
-
77954533923
-
Cloning and characterization of HsfA2 from Lily (Lilium longiflorum)
-
Xin, H., Zhang, H., Chen, L., Li, X., Lian, Q., Yuan, X., et al. (2010). Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep. 29, 875-885. doi: 10.1007/s00299-010-0873-1.
-
(2010)
Plant Cell Rep
, vol.29
, pp. 875-885
-
-
Xin, H.1
Zhang, H.2
Chen, L.3
Li, X.4
Lian, Q.5
Yuan, X.6
-
91
-
-
84940666886
-
TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets
-
Xue, G. P., Drenth, J., and McIntyre, C. L. (2015). TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J. Exp. Bot. 66, 1025-1039. doi: 10.1093/jxb/eru462.
-
(2015)
J. Exp. Bot
, vol.66
, pp. 1025-1039
-
-
Xue, G.P.1
Drenth, J.2
McIntyre, C.L.3
-
92
-
-
84893299108
-
The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes
-
Xue, G. P., Sadat, S., Drenth, J., and McIntyre, C. L. (2014). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65, 539-557. doi: 10.1093/jxb/ert399.
-
(2014)
J. Exp. Bot
, vol.65
, pp. 539-557
-
-
Xue, G.P.1
Sadat, S.2
Drenth, J.3
McIntyre, C.L.4
-
93
-
-
43149100082
-
Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis
-
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., et al. (2008). Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227, 957-967. doi: 10.1007/s00425-007-0670-4.
-
(2008)
Planta
, vol.227
, pp. 957-967
-
-
Yokotani, N.1
Ichikawa, T.2
Kondou, Y.3
Matsui, M.4
Hirochika, H.5
Iwabuchi, M.6
-
94
-
-
39749142544
-
Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system
-
Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., et al. (2008). Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system.Biochem. Biophys. Res. Commun. 368, 515-521. doi: 10.1016/j.bbrc.2008.01.134.
-
(2008)
Biochem. Biophys. Res. Commun
, vol.368
, pp. 515-521
-
-
Yoshida, T.1
Sakuma, Y.2
Todaka, D.3
Maruyama, K.4
Qin, F.5
Mizoi, J.6
-
95
-
-
84942847117
-
The heat shock factor gene family in Salix suchowensis: A genome-wide survey and expression profiling during development and abiotic stresses
-
Zhang, J., Li, Y., Jia, H. X., Li, J. B., Huang, J., Lu, M. Z., et al. (2015). The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. Front. Plant Sci. 6:748. doi: 10.3389/fpls.2015.00748.
-
(2015)
Front. Plant Sci
, vol.6
, pp. 748
-
-
Zhang, J.1
Li, Y.2
Jia, H.X.3
Li, J.B.4
Huang, J.5
Lu, M.Z.6
-
96
-
-
84877839327
-
Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures
-
Zhang, S., Xu, Z. S., Li, P., Yang, L., Wei, Y., Chen, M., et al. (2013). Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol. Biol. Report. 31, 688-697. doi: 10.1007/s11105-012-0546-z.
-
(2013)
Plant Mol. Biol. Report
, vol.31
, pp. 688-697
-
-
Zhang, S.1
Xu, Z.S.2
Li, P.3
Yang, L.4
Wei, Y.5
Chen, M.6
-
97
-
-
70350619191
-
2+-calmodulin in heat shock signal transduction
-
2+-calmodulin in heat shock signal transduction. Prog. Nat. Sci. 19, 1201-1208. doi: 10.1016/j.pnsc.2008.12.011.
-
(2009)
Prog. Nat. Sci
, vol.19
, pp. 1201-1208
-
-
Zhou, R.1
Li, B.2
Liu, H.3
Sun, D.4
-
98
-
-
33744545862
-
Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max)
-
Zhu, B., Ye, C., Lü, H., Chen, X., Chai, G., Chen, J., et al. (2006). Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J. Plant Res. 119, 247-256. doi: 10.1007/s10265-006-0267-1.
-
(2006)
J. Plant Res
, vol.119
, pp. 247-256
-
-
Zhu, B.1
Ye, C.2
Lü, H.3
Chen, X.4
Chai, G.5
Chen, J.6
-
99
-
-
84867334126
-
An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis
-
Zhu, X., Thalor, S. K., Takahashi, Y., Berberich, T., and Kusano, T. (2012). An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ. 35, 2014-2030. doi: 10.1111/j.1365-3040.2012.02533.x.
-
(2012)
Plant Cell Environ
, vol.35
, pp. 2014-2030
-
-
Zhu, X.1
Thalor, S.K.2
Takahashi, Y.3
Berberich, T.4
Kusano, T.5
-
100
-
-
70350212831
-
Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenicArabidopsis and tobacco
-
Zhu, Y., Wang, Z., Jing, Y., Wang, L., Liu, X., Liu, Y., et al. (2009). Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenicArabidopsis and tobacco. Plant Mol. Biol. 71, 451-467. doi: 10.1007/s11103-009-9538-2.
-
(2009)
Plant Mol. Biol
, vol.71
, pp. 451-467
-
-
Zhu, Y.1
Wang, Z.2
Jing, Y.3
Wang, L.4
Liu, X.5
Liu, Y.6
|