메뉴 건너뛰기




Volumn 3, Issue 4, 2012, Pages 277-283

Learning rates of least-square regularized regression with strongly mixing observation

Author keywords

Exponentially strongly mixing; Jackson interpolation operator; Polynomial kernels; Regularization error; Sample error

Indexed keywords

GENERALIZATION ERROR; INTERPOLATION OPERATOR; LEARNING RATES; LEAST SQUARES; POLYNOMIAL KERNELS; RATE OF APPROXIMATION; REPRODUCING KERNEL HILBERT SPACES; SAMPLE ERROR;

EID: 84868095525     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-011-0058-4     Document Type: Article
Times cited : (6)

References (21)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Soc 68: 337-404.
    • (1950) Trans Am Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0000973081 scopus 로고    scopus 로고
    • Minimum complexity regression estimation with weakly dependent observations
    • Modha S, Masry E (1996) Minimum complexity regression estimation with weakly dependent observations. IEEE Trans Inf Theory 42: 2133-2145.
    • (1996) IEEE Trans Inf Theory , vol.42 , pp. 2133-2145
    • Modha, S.1    Masry, E.2
  • 4
    • 40949097762 scopus 로고    scopus 로고
    • Learning rates of regularized regression for exponentially strongly mixing sequence
    • Xu YL, Chen DR (2008) Learning rates of regularized regression for exponentially strongly mixing sequence. J Stat Plan Inference 138: 2180-2189.
    • (2008) J Stat Plan Inference , vol.138 , pp. 2180-2189
    • Xu, Y.L.1    Chen, D.R.2
  • 5
    • 77951769307 scopus 로고    scopus 로고
    • Regularized least square regression with dependent samples
    • Sun HW, Wu Q (2010) Regularized least square regression with dependent samples. Adv Comput Math 32: 175-189.
    • (2010) Adv Comput Math , vol.32 , pp. 175-189
    • Sun, H.W.1    Wu, Q.2
  • 6
    • 0002605356 scopus 로고
    • A central theorem and strong mixing conditions
    • Rosenblatt M (1956) A central theorem and strong mixing conditions. Proc Natl Acad Sci 4: 43-47.
    • (1956) Proc Natl Acad Sci , vol.4 , pp. 43-47
    • Rosenblatt, M.1
  • 8
    • 0003161174 scopus 로고
    • Rates of convergence for empirical processes of stationary mixing sequences
    • Yu B (1994) Rates of convergence for empirical processes of stationary mixing sequences. Ann Probab 22: 94-114.
    • (1994) Ann Probab , vol.22 , pp. 94-114
    • Yu, B.1
  • 9
    • 67349220691 scopus 로고    scopus 로고
    • The generalization performance of ERM algorithm with strongly mixing observations
    • Zou B, Li LQ, Xu ZB (2009) The generalization performance of ERM algorithm with strongly mixing observations. Mach Learn 75: 275-295.
    • (2009) Mach Learn , vol.75 , pp. 275-295
    • Zou, B.1    Li, L.Q.2    Xu, Z.B.3
  • 10
    • 80051982737 scopus 로고    scopus 로고
    • Recent advances in machine learning techniques and applications
    • Sidorov G, Koeppen M, Cruz-Corts N (2011) Recent advances in machine learning techniques and applications. Int J Mach Learn Cybern 2(3): 123-124.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.3 , pp. 123-124
    • Sidorov, G.1    Koeppen, M.2    Cruz-Corts, N.3
  • 11
    • 79952937863 scopus 로고    scopus 로고
    • Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery
    • Liu Z, Wu QH, Zhang Y, Philip Chen CL (2011) Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cybern 2(1): 37-47.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.1 , pp. 37-47
    • Liu, Z.1    Wu, Q.H.2    Zhang, Y.3    Philip Chen, C.L.4
  • 12
    • 43949111665 scopus 로고    scopus 로고
    • Fast fuzzy multi-category SVM based on support vector domain description
    • Wang XZ, Lu SX, Zhai JH (2008) Fast fuzzy multi-category SVM based on support vector domain description. Int J Pattern Recogn Artif Intell 22(1): 109-120.
    • (2008) Int J Pattern Recogn Artif Intell , vol.22 , Issue.1 , pp. 109-120
    • Wang, X.Z.1    Lu, S.X.2    Zhai, J.H.3
  • 13
    • 79952929457 scopus 로고    scopus 로고
    • Separating theorem of samples in Banach space for support vector machine learning
    • He Q, Wu CX (2011) Separating theorem of samples in Banach space for support vector machine learning. Int J Mach Learn Cybern 2(1): 49-54.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.1 , pp. 49-54
    • He, Q.1    Wu, C.X.2
  • 14
    • 79952312481 scopus 로고    scopus 로고
    • Margin-based active learning for structured predictions
    • Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1-4): 3-25.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 3-25
    • Small, K.1    Roth, D.2
  • 15
    • 33750972277 scopus 로고    scopus 로고
    • A nonlinear integral defined on partition and its application to decision trees
    • Wang XZ, Zhang SF, Zhai JH (2007) A nonlinear integral defined on partition and its application to decision trees. Soft Comput 11(4): 317-321.
    • (2007) Soft Comput , vol.11 , Issue.4 , pp. 317-321
    • Wang, X.Z.1    Zhang, S.F.2    Zhai, J.H.3
  • 19
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F, Smale S (2001) On the mathematical foundations of learning. Bull Am Math Soc 39: 1-49.
    • (2001) Bull Am Math Soc , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 21
    • 0036436325 scopus 로고    scopus 로고
    • Best choice for regularization parameters in learning theory: on the bias-variance problem
    • Cucker F, Smale S (2002) Best choice for regularization parameters in learning theory: on the bias-variance problem. Found Comput Math 2: 413-428.
    • (2002) Comput. Math , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.