메뉴 건너뛰기




Volumn 4, Issue 1, 2013, Pages 13-24

Comparative study on classification performance between support vector machine and logistic regression

Author keywords

Bagging; Ensemble; Logistic regression (LR); Machine learning algorithm; Statistical analysis; Support vector machine (SVM)

Indexed keywords

DIAGNOSIS; LEARNING SYSTEMS; LOGISTIC REGRESSION; QUALITY CONTROL; STATISTICAL METHODS; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 84872352584     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-012-0068-x     Document Type: Article
Times cited : (75)

References (42)
  • 1
    • 0003508724 scopus 로고    scopus 로고
    • 2nd edn. Wiley series in probability and statistics, Wiley, Inc, New York
    • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley series in probability and statistics, Wiley, Inc, New York.
    • (2000) Applied logistic regression
    • Hosmer, D.W.1    Lemeshow, S.2
  • 6
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. logistic regression: a learning-curve analysis
    • doi: 10. 1162/153244304322972694
    • Perlich C, Provost F, Simonoff JS (2003) Tree induction vs. logistic regression: a learning-curve analysis. J Mach Learn Res. doi: 10. 1162/153244304322972694.
    • (2003) J Mach Learn Res.
    • Perlich, C.1    Provost, F.2    Simonoff, J.S.3
  • 7
    • 0029306995 scopus 로고
    • Statlog: comparison of classification algorithms on large real-world problems
    • King RD, Feng C, Sutherland A (1995) Statlog: comparison of classification algorithms on large real-world problems. Applied Artif Intell 9(3): 289-333.
    • (1995) Applied Artif Intell , vol.9 , Issue.3 , pp. 289-333
    • King, R.D.1    Feng, C.2    Sutherland, A.3
  • 8
    • 77952495934 scopus 로고    scopus 로고
    • Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait
    • Muniz AMS, Nadal J, Liu H, Liu W, Lyons KE, Pahwa R (2010) Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J Biomech 43(4): 720-726.
    • (2010) J Biomech , vol.43 , Issue.4 , pp. 720-726
    • Muniz, A.M.S.1    Nadal, J.2    Liu, H.3    Liu, W.4    Lyons, K.E.5    Pahwa, R.6
  • 10
    • 38949150441 scopus 로고    scopus 로고
    • Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets
    • doi:10.1504/IJEF.2006.008837
    • Chen W-H, Shih J-Y, Wu S (2006) Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets. Int J Electron Fin 1(1): 49-67. doi: 10. 1504/IJEF. 2006. 008837.
    • (2006) Int J Electron Fin , vol.1 , Issue.1 , pp. 49-67
    • Chen, W.-H.1    Shih, J.-Y.2    Wu, S.3
  • 11
    • 17044428072 scopus 로고    scopus 로고
    • Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses
    • Song JH, Venkatesh SS, Conan EA (2005) Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses. Acad Radiol 12(4): 487-495.
    • (2005) Acad Radiol , vol.12 , Issue.4 , pp. 487-495
    • Song, J.H.1    Venkatesh, S.S.2    Conan, E.A.3
  • 12
    • 58149265688 scopus 로고    scopus 로고
    • Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with hematological malignancies
    • doi:10.1186/1472-6947-8-56
    • Verplancke T, van Looy S, Benoit D, Vansteelandt S, Depuydt P, De Turck F, Decruyenaere J (2008) Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with hematological malignancies. BMC Med Inform Decis Mak 8: 56. doi: 10. 1186/1472-6947-8-56.
    • (2008) BMC Med Inform Decis Mak , vol.8 , pp. 56
    • Verplancke, T.1    van Looy, S.2    Benoit, D.3    Vansteelandt, S.4    Depuydt, P.5    de Turck, F.6    Decruyenaere, J.7
  • 14
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • Zhang L (2011) Sparse ensembles using weighted combination methods based on linear programming. Pattern Recogn 44(1): 97-106.
    • (2011) Pattern Recogn , vol.44 , Issue.1 , pp. 97-106
    • Zhang, L.1
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24: 123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 16
    • 79952312481 scopus 로고    scopus 로고
    • Margin-based active learning for structured predictions
    • Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybernet 1(1-4): 3-25.
    • (2010) Int J Mach Learn Cybernet , vol.1 , Issue.1-4 , pp. 3-25
    • Small, K.1    Roth, D.2
  • 17
    • 33745774351 scopus 로고    scopus 로고
    • A parallel genetic algorithm for solving the inverse problem of support vector machines
    • He Q, Wang X, Chen J, Yan L (2006) A parallel genetic algorithm for solving the inverse problem of support vector machines. ICMLC 2005 LNAI 3930: 871-879.
    • (2006) ICMLC 2005 LNAI , vol.3930 , pp. 871-879
    • He, Q.1    Wang, X.2    Chen, J.3    Yan, L.4
  • 18
    • 24144456139 scopus 로고    scopus 로고
    • A genetic algorithm for solving the inverse problem of support vector machines
    • Wang X-Z, He Q, Chen D-G, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68: 225-238.
    • (2005) Neurocomputing , vol.68 , pp. 225-238
    • Wang, X.-Z.1    He, Q.2    Chen, D.-G.3    Yeung, D.4
  • 19
    • 79952929457 scopus 로고    scopus 로고
    • Separating theorem of samples in Banach space for support vector machine learning
    • He Q, Congxin Wu (2011) Separating theorem of samples in Banach space for support vector machine learning. Int J Mach Learn Cybernet (IJMLC) 2(1): 49-54.
    • (2011) Int J Mach Learn Cybernet (IJMLC) , vol.2 , Issue.1 , pp. 49-54
    • He, Q.1    Congxin, W.2
  • 20
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian Kernel
    • Sathiya Keerthi S, Lin C-J (2003) Asymptotic behaviors of support vector machines with Gaussian Kernel. Neural Comput 15(7): 1667-1689.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Sathiya Keerthi, S.1    Lin, C.-J.2
  • 22
    • 43949111665 scopus 로고    scopus 로고
    • Fast fuzzy multi-category SVM based on support vector domain description
    • Wang X-Z, Shu-Xia Lu, Zhai J-H (2008) Fast fuzzy multi-category SVM based on support vector domain description. Int J Pattern Recognit Artif Intell 22(1): 109-120.
    • (2008) Int J Pattern Recognit Artif Intell , vol.22 , Issue.1 , pp. 109-120
    • Wang, X.-Z.1    Shu-Xia, L.2    Zhai, J.-H.3
  • 23
    • 0037203108 scopus 로고    scopus 로고
    • Global goodness-of-t tests in logistic regression with sparse data
    • Kuss O (2002) Global goodness-of-t tests in logistic regression with sparse data. Statist Med 21: 380-3789.
    • (2002) Statist Med , vol.21 , pp. 380-3789
    • Kuss, O.1
  • 24
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • doi: 10. 1007/3-540-45014-9_1
    • Dietterich TG (2000) Ensemble methods in machine learning. Lecture Notes in Computer Science, vol. 1857, pp. 1-15. doi: 10. 1007/3-540-45014-9_1.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 25
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G, Dietterich TG (2004) Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5: 725-775.
    • (2004) J Mach Learn Res , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 27
    • 51849156137 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. AI 2006: advances in artificial intelligence
    • doi:10.1007/11941439_114
    • Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. AI 2006: advances in artificial intelligence. LNCS 4304: 1015-1021. doi: 10. 1007/11941439_114.
    • (2006) Lncs , vol.4304 , pp. 1015-1021
    • Japkowicz, N.1    Szpakowicz, S.2
  • 28
    • 84870822387 scopus 로고    scopus 로고
    • A likelihood approach to diagnostic tests in clinical medicine
    • Pereira BdeB, Pereira CAdeB (2005) A likelihood approach to diagnostic tests in clinical medicine. Revstat Stat J, Lisboa 3(1): 77-98.
    • (2005) Revstat Stat J, Lisboa , vol.3 , Issue.1 , pp. 77-98
    • Pereira, B.1    Pereira, C.2
  • 29
    • 0242629046 scopus 로고    scopus 로고
    • The diagnostic odds ratio: a single indicator of test performance
    • Glasa AS, Lijmer JG, Bossuyta PMM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56: 1129-1135.
    • (2003) J Clin Epidemiol , vol.56 , pp. 1129-1135
    • Glasa, A.S.1    Lijmer, J.G.2    Bossuyta, P.M.M.3
  • 30
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curves in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the roc curves in the evaluation of machine learning algorithms. Pattern Recogn 30(7): 1145-1159.
    • (1997) Pattern Recogn , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 32
    • 49549139345 scopus 로고
    • The area above the ordinal dominance graph and the area below the receiver operating graph
    • Bamber D (1975) The area above the ordinal dominance graph and the area below the receiver operating graph. J Math Psychol 12(4): 387-415.
    • (1975) J Math Psychol , vol.12 , Issue.4 , pp. 387-415
    • Bamber, D.1
  • 33
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 35
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 36
    • 79952937863 scopus 로고    scopus 로고
    • Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery
    • Liu Z, Wu Q, Zhang Y, Philip Chen CL (2011) Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cyber 2(1): 37-47.
    • (2011) Int J Mach Learn Cyber , vol.2 , Issue.1 , pp. 37-47
    • Liu, Z.1    Wu, Q.2    Zhang, Y.3    Philip Chen, C.L.4
  • 37
    • 78049383639 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Hsu C-W, Chang C-C, Lin C-J (2010) A practical guide to support vector classification. Citeseer 1(1): 1-16.
    • (2010) Citeseer , vol.1 , Issue.1 , pp. 1-16
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 38
    • 79956195274 scopus 로고    scopus 로고
    • Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets
    • He Q, Congxin Wu (2011) Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets. Soft Comput 15(6): 1105-1114.
    • (2011) Soft Comput , vol.15 , Issue.6 , pp. 1105-1114
    • He, Q.1    Congxin, W.2
  • 39
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction
    • Stone M (1974) Cross-validatory choice and assessment of statistical prediction. J Royal Stat Soc B 36: 111-147.
    • (1974) J Royal Stat Soc B , vol.36 , pp. 111-147
    • Stone, M.1
  • 40
    • 68549112870 scopus 로고    scopus 로고
    • On the use of K-fold cross-validation to choose cutoff values and assess the performance of predictive models in stepwise regression
    • Article 25
    • Mahmood Z (2009) On the use of K-fold cross-validation to choose cutoff values and assess the performance of predictive models in stepwise regression. Int J Biostat 5(1), Article 25.
    • (2009) Int J Biostat , vol.5 , Issue.1
    • Mahmood, Z.1
  • 41


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.