메뉴 건너뛰기




Volumn 22, Issue 11, 2014, Pages 614-622

Metabolism impacts upon candida immunogenicity and pathogenicity at multiple levels

Author keywords

Cell wall; Fungal immunology; Metabolic adaptation; Regulatory networks; Stress adaptation; Virulence factors

Indexed keywords

CARBON; NITROGEN; OXYGEN; PHOSPHORUS; SULFUR;

EID: 84926988356     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.07.001     Document Type: Review
Times cited : (202)

References (101)
  • 3
    • 34249724445 scopus 로고    scopus 로고
    • Nosocomial fungal infections: epidemiology, diagnosis, and treatment
    • Perlroth J., et al. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 2007, 45:321-346.
    • (2007) Med. Mycol. , vol.45 , pp. 321-346
    • Perlroth, J.1
  • 4
    • 84871502341 scopus 로고    scopus 로고
    • Hidden killers: human fungal infections
    • 165rv13
    • Brown G.D., et al. Hidden killers: human fungal infections. Sci. Transl. Med. 2012, 4:165rv13.
    • (2012) Sci. Transl. Med. , vol.4
    • Brown, G.D.1
  • 5
    • 84874215031 scopus 로고    scopus 로고
    • Stress responses in Candida
    • ASM Press, C.J. Clancy, R.A. Calderone (Eds.)
    • Brown A.J.P., et al. Stress responses in Candida. Candida and Candidiasis 2012, 225-242. ASM Press. 2nd edn. C.J. Clancy, R.A. Calderone (Eds.).
    • (2012) Candida and Candidiasis , pp. 225-242
    • Brown, A.J.P.1
  • 6
    • 84865307122 scopus 로고    scopus 로고
    • Importance of the Candida albicans cell wall during commensalism and infection
    • Gow N.A.R., Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 2012, 15:406-412.
    • (2012) Curr. Opin. Microbiol. , vol.15 , pp. 406-412
    • Gow, N.A.R.1    Hube, B.2
  • 7
    • 84867827357 scopus 로고    scopus 로고
    • Hsp90 - a biological transistor that tunes cellular outputs to thermal inputs
    • Leach M.D., et al. Hsp90 - a biological transistor that tunes cellular outputs to thermal inputs. Nat. Rev. Microbiol. 2012, 10:693-704.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 693-704
    • Leach, M.D.1
  • 8
    • 84896509799 scopus 로고    scopus 로고
    • Stress adaptation in a pathogenic fungus
    • Brown A.J.P., et al. Stress adaptation in a pathogenic fungus. J. Exp. Biol. 2014, 217:144-155.
    • (2014) J. Exp. Biol. , vol.217 , pp. 144-155
    • Brown, A.J.P.1
  • 9
    • 85014463117 scopus 로고    scopus 로고
    • Integration of metabolism with virulence in Candida albicans
    • Ene I.V., Brown A.J.P. Integration of metabolism with virulence in Candida albicans. Mycota 2014, 13:349-370.
    • (2014) Mycota , vol.13 , pp. 349-370
    • Ene, I.V.1    Brown, A.J.P.2
  • 10
    • 33747378294 scopus 로고    scopus 로고
    • Effects of depleting the essential central metabolic enzyme, fructose-1,6-bisphosphate aldolase, upon the growth and viability of Candida albicans: implications for antifungal drug target discovery
    • Rodaki A., et al. Effects of depleting the essential central metabolic enzyme, fructose-1,6-bisphosphate aldolase, upon the growth and viability of Candida albicans: implications for antifungal drug target discovery. Eukaryot. Cell 2006, 5:1371-1377.
    • (2006) Eukaryot. Cell , vol.5 , pp. 1371-1377
    • Rodaki, A.1
  • 11
    • 67749122471 scopus 로고    scopus 로고
    • Chemical genetic profiling and characterization of small-molecule compounds that affect the biosynthesis of unsaturated fatty acids in Candida albicans
    • Xu D., et al. Chemical genetic profiling and characterization of small-molecule compounds that affect the biosynthesis of unsaturated fatty acids in Candida albicans. J. Biol. Chem. 2009, 284:19754-19764.
    • (2009) J. Biol. Chem. , vol.284 , pp. 19754-19764
    • Xu, D.1
  • 12
    • 33646343945 scopus 로고    scopus 로고
    • Niche-specific regulation of central metabolic pathways in a fungal pathogen
    • Barelle C.J., et al. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 2006, 8:961-971.
    • (2006) Cell. Microbiol. , vol.8 , pp. 961-971
    • Barelle, C.J.1
  • 13
    • 0033023953 scopus 로고    scopus 로고
    • A vaginal fluid simulant
    • Owen D.H., Katz D.F. A vaginal fluid simulant. Contraception 1999, 59:91-95.
    • (1999) Contraception , vol.59 , pp. 91-95
    • Owen, D.H.1    Katz, D.F.2
  • 14
    • 34548622179 scopus 로고    scopus 로고
    • Infection-related gene expression in Candida albicans
    • Brown A.J.P., et al. Infection-related gene expression in Candida albicans. Curr. Opin. Microbiol. 2007, 10:307-313.
    • (2007) Curr. Opin. Microbiol. , vol.10 , pp. 307-313
    • Brown, A.J.P.1
  • 15
    • 84946022933 scopus 로고    scopus 로고
    • From commensal to pathogen: Candida albicans
    • Whittington A., et al. From commensal to pathogen: Candida albicans. Mycota 2014, 12:3-18.
    • (2014) Mycota , vol.12 , pp. 3-18
    • Whittington, A.1
  • 16
    • 35948998096 scopus 로고    scopus 로고
    • In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination
    • Zakikhany K., et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 2007, 9:2938-2954.
    • (2007) Cell. Microbiol. , vol.9 , pp. 2938-2954
    • Zakikhany, K.1
  • 17
    • 67651173120 scopus 로고    scopus 로고
    • Identifying infection-associated genes of Candida albicans in the postgenomic era
    • Wilson D., et al. Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res. 2009, 9:688-700.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 688-700
    • Wilson, D.1
  • 18
    • 0345669743 scopus 로고    scopus 로고
    • Stage-specific gene expression of Candida albicans in human blood
    • Fradin C., et al. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 2003, 47:1523-1543.
    • (2003) Mol. Microbiol. , vol.47 , pp. 1523-1543
    • Fradin, C.1
  • 19
    • 17144368786 scopus 로고    scopus 로고
    • Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood
    • Fradin C., et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 2005, 56:397-415.
    • (2005) Mol. Microbiol. , vol.56 , pp. 397-415
    • Fradin, C.1
  • 20
    • 6344285788 scopus 로고    scopus 로고
    • Transcriptional response of Candida albicans upon internalization by macrophages
    • Lorenz M.C., et al. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 2004, 3:1076-1087.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1076-1087
    • Lorenz, M.C.1
  • 21
    • 0141814620 scopus 로고    scopus 로고
    • Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans
    • Rubin-Bejerano I., et al. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:11007-11012.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 11007-11012
    • Rubin-Bejerano, I.1
  • 22
    • 80052562480 scopus 로고    scopus 로고
    • Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine
    • Ueno K., et al. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS ONE 2011, 6:e24759.
    • (2011) PLoS ONE , vol.6 , pp. e24759
    • Ueno, K.1
  • 23
    • 71549164363 scopus 로고    scopus 로고
    • Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans
    • Askew C., et al. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog. 2009, 5:e1000612.
    • (2009) PLoS Pathog. , vol.5 , pp. e1000612
    • Askew, C.1
  • 24
    • 77950553742 scopus 로고    scopus 로고
    • Evolutionary tinkering with conserved components of a transcriptional regulatory network
    • Lavoie H., et al. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol. 2010, 8:e1000329.
    • (2010) PLoS Biol. , vol.8 , pp. e1000329
    • Lavoie, H.1
  • 25
    • 0037107425 scopus 로고    scopus 로고
    • CaGcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans
    • Tripathi G., et al. CaGcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 2002, 21:5448-5456.
    • (2002) EMBO J. , vol.21 , pp. 5448-5456
    • Tripathi, G.1
  • 26
    • 69949129045 scopus 로고    scopus 로고
    • Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis
    • Sabina J., Brown V. Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot. Cell 2009, 8:1314-1320.
    • (2009) Eukaryot. Cell , vol.8 , pp. 1314-1320
    • Sabina, J.1    Brown, V.2
  • 27
    • 84875478111 scopus 로고    scopus 로고
    • Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit
    • Perez J.C., et al. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol. 2013, 11:e1001510.
    • (2013) PLoS Biol. , vol.11 , pp. e1001510
    • Perez, J.C.1
  • 28
    • 84883434044 scopus 로고    scopus 로고
    • Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism
    • Pande K., et al. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat. Genet. 2013, 45:1088-1091.
    • (2013) Nat. Genet. , vol.45 , pp. 1088-1091
    • Pande, K.1
  • 29
    • 0037069364 scopus 로고    scopus 로고
    • Metabolic specialization associated with phenotypic switching in Candida albicans
    • Lan C.Y., et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:14907-14912.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 14907-14912
    • Lan, C.Y.1
  • 30
    • 0036798450 scopus 로고    scopus 로고
    • Transcript profiling of Candida albicans cells undergoing the yeast-to-hyphal transition
    • Nantel A., et al. Transcript profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 2002, 13:3452-3465.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 3452-3465
    • Nantel, A.1
  • 31
    • 34250720677 scopus 로고    scopus 로고
    • Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans
    • Arana D.M., et al. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell. Microbiol. 2007, 9:1647-1659.
    • (2007) Cell. Microbiol. , vol.9 , pp. 1647-1659
    • Arana, D.M.1
  • 32
    • 84888233299 scopus 로고    scopus 로고
    • Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape
    • Patterson M.J., et al. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape. Antiox. Redox Signal. 2013, 19:2244-2260.
    • (2013) Antiox. Redox Signal. , vol.19 , pp. 2244-2260
    • Patterson, M.J.1
  • 33
    • 84865309913 scopus 로고    scopus 로고
    • Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen
    • Ene I.V., et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell. Microbiol. 2012, 14:1319-1335.
    • (2012) Cell. Microbiol. , vol.14 , pp. 1319-1335
    • Ene, I.V.1
  • 34
    • 73949083506 scopus 로고    scopus 로고
    • Glucose promotes stress resistance in the fungal pathogen, Candida albicans
    • Rodaki A., et al. Glucose promotes stress resistance in the fungal pathogen, Candida albicans. Mol. Biol. Cell 2009, 20:4845-4855.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4845-4855
    • Rodaki, A.1
  • 35
    • 67650376275 scopus 로고    scopus 로고
    • Adaptive prediction of environmental changes by microorganisms
    • Mitchell A., et al. Adaptive prediction of environmental changes by microorganisms. Nature 2009, 460:220-224.
    • (2009) Nature , vol.460 , pp. 220-224
    • Mitchell, A.1
  • 36
    • 0033828333 scopus 로고    scopus 로고
    • Hyperphosphorylation of Msn2 and Msn4 in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae
    • Garreau H., et al. Hyperphosphorylation of Msn2 and Msn4 in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 2000, 146:2113-2120.
    • (2000) Microbiology , vol.146 , pp. 2113-2120
    • Garreau, H.1
  • 37
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch A.P., et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11:4241-4257.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1
  • 38
    • 46949086824 scopus 로고    scopus 로고
    • Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors
    • Roetzer A., et al. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol. Microbiol. 2008, 69:603-620.
    • (2008) Mol. Microbiol. , vol.69 , pp. 603-620
    • Roetzer, A.1
  • 39
    • 57349116973 scopus 로고    scopus 로고
    • The novel gene MNL1 regulates weak acid induced stress responses of the fungal pathogen Candida albicans
    • Ramsdale M., et al. The novel gene MNL1 regulates weak acid induced stress responses of the fungal pathogen Candida albicans. Mol. Biol. Cell 2008, 19:4393-4403.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4393-4403
    • Ramsdale, M.1
  • 40
    • 84868152472 scopus 로고    scopus 로고
    • Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans
    • Ene I.V., et al. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 2012, 12:3164-3179.
    • (2012) Proteomics , vol.12 , pp. 3164-3179
    • Ene, I.V.1
  • 41
    • 66449112196 scopus 로고    scopus 로고
    • Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non-redundant roles in stress response and glycogen storage
    • Giacometti R., et al. Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non-redundant roles in stress response and glycogen storage. Yeast 2009, 26:273-285.
    • (2009) Yeast , vol.26 , pp. 273-285
    • Giacometti, R.1
  • 42
    • 17144443699 scopus 로고    scopus 로고
    • 2 and the acquisition of oxidative tolerance in Candida albicans
    • 2 and the acquisition of oxidative tolerance in Candida albicans. Yeast 2003, 20:1161-1169.
    • (2003) Yeast , vol.20 , pp. 1161-1169
    • Gonzalez-Parraga, P.1
  • 43
    • 77955813140 scopus 로고    scopus 로고
    • Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways
    • Gonzalez-Parraga P., et al. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res. 2010, 10:747-756.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 747-756
    • Gonzalez-Parraga, P.1
  • 44
    • 84890116565 scopus 로고    scopus 로고
    • Mannosylation in Candida albicans: role in cell wall function and immune recognition
    • Hall R.A., Gow N.A.R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 2013, 90:1147-1161.
    • (2013) Mol. Microbiol. , vol.90 , pp. 1147-1161
    • Hall, R.A.1    Gow, N.A.R.2
  • 45
    • 4143087024 scopus 로고    scopus 로고
    • Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins
    • de Groot P.W.J., et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 2004, 3:955-965.
    • (2004) Eukaryot. Cell , vol.3 , pp. 955-965
    • de Groot, P.W.J.1
  • 46
    • 84876849076 scopus 로고    scopus 로고
    • The Mnn2 mannosyltransferases regulate mannoprotein fibril length, immune recognition and virulence of Candida albicans
    • Hall R.A., et al. The Mnn2 mannosyltransferases regulate mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog. 2013, 9:e1003276.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003276
    • Hall, R.A.1
  • 47
    • 39749119354 scopus 로고    scopus 로고
    • Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions
    • Sosinska G.J., et al. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 2008, 154:510-520.
    • (2008) Microbiology , vol.154 , pp. 510-520
    • Sosinska, G.J.1
  • 48
    • 81455141210 scopus 로고    scopus 로고
    • Mannan structural complexity is decreased when Candida albicans is cultivated in blood or serum at physiological temperature
    • Lowman D.W., et al. Mannan structural complexity is decreased when Candida albicans is cultivated in blood or serum at physiological temperature. Carbohydr. Res. 2011, 346:2752-2759.
    • (2011) Carbohydr. Res. , vol.346 , pp. 2752-2759
    • Lowman, D.W.1
  • 49
    • 4844230744 scopus 로고    scopus 로고
    • Identification of the dialysable serum inducer of germ-tube formation in Candida albicans
    • Hudson D.A., et al. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology 2004, 150:3041-3304.
    • (2004) Microbiology , vol.150 , pp. 3041-3304
    • Hudson, D.A.1
  • 50
    • 14644415945 scopus 로고    scopus 로고
    • Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1
    • Maidan M.M., et al. Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem. Soc. Trans. 2005, 33:291-293.
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 291-293
    • Maidan, M.M.1
  • 51
    • 0027940569 scopus 로고
    • Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans
    • Hube B., et al. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 1994, 14:87-99.
    • (1994) Mol. Microbiol. , vol.14 , pp. 87-99
    • Hube, B.1
  • 52
    • 0020420592 scopus 로고
    • The effect of dietary carbohydrates on the in vitro adhesion of Candida albicans to epithelial cells
    • Samaranayake L.P., Macfarlane T.W. The effect of dietary carbohydrates on the in vitro adhesion of Candida albicans to epithelial cells. J. Med. Microbiol. 1982, 15:511-517.
    • (1982) J. Med. Microbiol. , vol.15 , pp. 511-517
    • Samaranayake, L.P.1    Macfarlane, T.W.2
  • 53
    • 0021843276 scopus 로고
    • Differential adhesion of pathogenic Candida species to epithelial and inert surfaces
    • Critchley I., Douglas L.J. Differential adhesion of pathogenic Candida species to epithelial and inert surfaces. FEMS Microbiol. Lett. 1985, 28:199-203.
    • (1985) FEMS Microbiol. Lett. , vol.28 , pp. 199-203
    • Critchley, I.1    Douglas, L.J.2
  • 54
    • 4143050182 scopus 로고    scopus 로고
    • Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars
    • Jin Y., et al. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch. Oral Biol. 2004, 49:789-798.
    • (2004) Arch. Oral Biol. , vol.49 , pp. 789-798
    • Jin, Y.1
  • 55
    • 34248327805 scopus 로고    scopus 로고
    • Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans
    • Enjalbert B., et al. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 2007, 75:2143-2151.
    • (2007) Infect. Immun. , vol.75 , pp. 2143-2151
    • Enjalbert, B.1
  • 56
    • 84871372741 scopus 로고    scopus 로고
    • Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
    • Miramon P., et al. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE 2012, 7:e52850.
    • (2012) PLoS ONE , vol.7 , pp. e52850
    • Miramon, P.1
  • 57
    • 84871996857 scopus 로고    scopus 로고
    • Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes
    • Pierce J.V., et al. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot. Cell 2013, 12:37-49.
    • (2013) Eukaryot. Cell , vol.12 , pp. 37-49
    • Pierce, J.V.1
  • 58
    • 33947264766 scopus 로고    scopus 로고
    • In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion
    • Thewes S., et al. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol. Microbiol. 2007, 63:1606-1628.
    • (2007) Mol. Microbiol. , vol.63 , pp. 1606-1628
    • Thewes, S.1
  • 59
    • 3042765834 scopus 로고    scopus 로고
    • APSES proteins regulate morphogenesis and metabolism in Candida albicans
    • Doedt T., et al. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol. Biol. Cell 2004, 15:3167-3180.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3167-3180
    • Doedt, T.1
  • 60
    • 4644309973 scopus 로고    scopus 로고
    • Transcription profiling of cyclic AMP signaling in Candida albicans
    • Harcus D., et al. Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell 2004, 15:4490-4499.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 4490-4499
    • Harcus, D.1
  • 61
    • 35648964750 scopus 로고    scopus 로고
    • Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans
    • Zordan R.E., et al. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 2007, 5:e256.
    • (2007) PLoS Biol. , vol.5 , pp. e256
    • Zordan, R.E.1
  • 62
    • 77955554767 scopus 로고    scopus 로고
    • Regulation of white-opaque switching in Candida albicans
    • Morschhauser J. Regulation of white-opaque switching in Candida albicans. Med. Microbiol. Immunol. 2010, 199:165-172.
    • (2010) Med. Microbiol. Immunol. , vol.199 , pp. 165-172
    • Morschhauser, J.1
  • 63
    • 17944370004 scopus 로고    scopus 로고
    • NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans
    • Murad A.M.A., et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001, 20:4742-4752.
    • (2001) EMBO J. , vol.20 , pp. 4742-4752
    • Murad, A.M.A.1
  • 64
    • 79960921059 scopus 로고    scopus 로고
    • Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance
    • Lu Y., et al. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 2011, 9:e1001105.
    • (2011) PLoS Biol. , vol.9 , pp. e1001105
    • Lu, Y.1
  • 65
    • 84873328069 scopus 로고    scopus 로고
    • Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity
    • Su C., et al. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol. Biol. Cell 2013, 24:385-397.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 385-397
    • Su, C.1
  • 66
    • 0030819459 scopus 로고    scopus 로고
    • Nonfilamentous C. albicans mutants are avirulent
    • Lo H.J., et al. Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90:939-949.
    • (1997) Cell , vol.90 , pp. 939-949
    • Lo, H.J.1
  • 67
    • 1242277768 scopus 로고    scopus 로고
    • Candida albicans Csy1p Is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis
    • Brega E., et al. Candida albicans Csy1p Is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot. Cell 2004, 3:135-143.
    • (2004) Eukaryot. Cell , vol.3 , pp. 135-143
    • Brega, E.1
  • 68
    • 0035811478 scopus 로고    scopus 로고
    • The glyoxylate cycle is required for fungal virulence
    • Lorenz M.C., Fink G.R. The glyoxylate cycle is required for fungal virulence. Nature 2001, 412:83-86.
    • (2001) Nature , vol.412 , pp. 83-86
    • Lorenz, M.C.1    Fink, G.R.2
  • 69
    • 27144478905 scopus 로고    scopus 로고
    • Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control
    • Martinez P., Ljungdahl P.O. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol. Cell. Biol. 2005, 25:9435-9446.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9435-9446
    • Martinez, P.1    Ljungdahl, P.O.2
  • 70
    • 77954095162 scopus 로고    scopus 로고
    • Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
    • Noble S.M., et al. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 2010, 42:590-598.
    • (2010) Nat. Genet. , vol.42 , pp. 590-598
    • Noble, S.M.1
  • 71
    • 79551670803 scopus 로고    scopus 로고
    • Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post- transcriptional regulator Ccr4-Pop2
    • Dagley M.J., et al. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post- transcriptional regulator Ccr4-Pop2. Mol. Microbiol. 2011, 79:968-989.
    • (2011) Mol. Microbiol. , vol.79 , pp. 968-989
    • Dagley, M.J.1
  • 72
    • 84856117019 scopus 로고    scopus 로고
    • A recently evolved transcriptional network controls biofilm development in Candida albicans
    • Nobile C.J., et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148:126-138.
    • (2012) Cell , vol.148 , pp. 126-138
    • Nobile, C.J.1
  • 73
    • 84855199285 scopus 로고    scopus 로고
    • The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH
    • e00055-11
    • Vylkova S., et al. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2011, 2. e00055-11.
    • (2011) MBio , vol.2
    • Vylkova, S.1
  • 74
    • 80051920871 scopus 로고    scopus 로고
    • Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils
    • Losse J., et al. Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils. Mol. Immunol. 2011, 48:2135-2143.
    • (2011) Mol. Immunol. , vol.48 , pp. 2135-2143
    • Losse, J.1
  • 75
    • 79953062342 scopus 로고    scopus 로고
    • Innate antifungal immunity: the key role of phagocytes
    • Brown G.D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 2011, 29:1-21.
    • (2011) Annu. Rev. Immunol. , vol.29 , pp. 1-21
    • Brown, G.D.1
  • 76
    • 84855872990 scopus 로고    scopus 로고
    • Candida albicans morphogenesis and the host defence: discriminating invasion from colonization
    • Gow N.A.R., et al. Candida albicans morphogenesis and the host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 2012, 10:112-122.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 112-122
    • Gow, N.A.R.1
  • 77
    • 62249165087 scopus 로고    scopus 로고
    • Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes
    • Fernandez-Arenas E., et al. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell. Microbiol. 2009, 11:560-589.
    • (2009) Cell. Microbiol. , vol.11 , pp. 560-589
    • Fernandez-Arenas, E.1
  • 78
    • 84887281064 scopus 로고    scopus 로고
    • NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality
    • Brothers K.M., et al. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 2013, 9:e1003634.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003634
    • Brothers, K.M.1
  • 79
    • 0037149510 scopus 로고    scopus 로고
    • + flux
    • + flux. Nature 2002, 416:291-297.
    • (2002) Nature , vol.416 , pp. 291-297
    • Reeves, E.P.1
  • 80
    • 77950252783 scopus 로고    scopus 로고
    • Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages
    • McKenzie C.G.J., et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun. 2010, 78:1650-1658.
    • (2010) Infect. Immun. , vol.78 , pp. 1650-1658
    • McKenzie, C.G.J.1
  • 81
    • 84861211194 scopus 로고    scopus 로고
    • Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants
    • Lewis L.E., et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 2012, 8:e1002578.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002578
    • Lewis, L.E.1
  • 82
    • 84871886451 scopus 로고    scopus 로고
    • Growth of Candida albicans cells on the physiologically relevant carbon source, lactate, affects their recognition and phagocytosis by immune cells
    • Ene I.V., et al. Growth of Candida albicans cells on the physiologically relevant carbon source, lactate, affects their recognition and phagocytosis by immune cells. Infect. Immun. 2013, 81:238-248.
    • (2013) Infect. Immun. , vol.81 , pp. 238-248
    • Ene, I.V.1
  • 83
    • 33745207594 scopus 로고    scopus 로고
    • Immune sensing of Candida albicans: cooperative recognition of mannans and glucan by lectin and Toll-like receptors
    • Netea M.G., et al. Immune sensing of Candida albicans: cooperative recognition of mannans and glucan by lectin and Toll-like receptors. J. Clin. Invest. 2006, 116:1642-1650.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1642-1650
    • Netea, M.G.1
  • 84
    • 41149133426 scopus 로고    scopus 로고
    • Differential high affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side chain branching
    • Adams E.L., et al. Differential high affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side chain branching. J. Pharmacol. Exp. Ther. 2008, 325:115-123.
    • (2008) J. Pharmacol. Exp. Ther. , vol.325 , pp. 115-123
    • Adams, E.L.1
  • 85
    • 84893702179 scopus 로고    scopus 로고
    • Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast
    • Lowman D.W., et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J. Biol. Chem. 2014, 289:3432-3443.
    • (2014) J. Biol. Chem. , vol.289 , pp. 3432-3443
    • Lowman, D.W.1
  • 86
    • 44849141076 scopus 로고    scopus 로고
    • Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes
    • Lohse M.B., Johnson A.D. differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS ONE 2008, 3:e1473.
    • (2008) PLoS ONE , vol.3 , pp. e1473
    • Lohse, M.B.1    Johnson, A.D.2
  • 87
    • 84864058208 scopus 로고    scopus 로고
    • Candida albicans scavenges host zinc via Pra1 during endothelial invasion
    • Citiulo F., et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 2012, 8:e1002777.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002777
    • Citiulo, F.1
  • 88
    • 57149114313 scopus 로고    scopus 로고
    • The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin
    • Almeida R.S., et al. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 2008, 4:e1000217.
    • (2008) PLoS Pathog. , vol.4 , pp. e1000217
    • Almeida, R.S.1
  • 89
    • 84876848564 scopus 로고    scopus 로고
    • Differential adaptation of Candida albicans in vivo modulates immune recognition by Dectin- 1
    • Marakalala M.J., et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by Dectin- 1. PLoS Pathog. 2013, 9:e1003315.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003315
    • Marakalala, M.J.1
  • 90
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011, 12:295-303.
    • (2011) Nat. Immunol. , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 91
    • 84878238075 scopus 로고    scopus 로고
    • Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways
    • Kim J.S., et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat. Immunol. 2013, 14:611-618.
    • (2013) Nat. Immunol. , vol.14 , pp. 611-618
    • Kim, J.S.1
  • 92
    • 84876285741 scopus 로고    scopus 로고
    • Succinate is an inflammatory signal that induces IL-1β through HIF-1α
    • Tannahill G.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496:238-242.
    • (2013) Nature , vol.496 , pp. 238-242
    • Tannahill, G.M.1
  • 93
    • 84900536186 scopus 로고    scopus 로고
    • Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling
    • Moyes D.L., et al. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J. Infect. Dis. 2014, 209:1816-1826.
    • (2014) J. Infect. Dis. , vol.209 , pp. 1816-1826
    • Moyes, D.L.1
  • 94
    • 84882664672 scopus 로고    scopus 로고
    • Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
    • Zelante T., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39:372-385.
    • (2013) Immunity , vol.39 , pp. 372-385
    • Zelante, T.1
  • 95
    • 0033887399 scopus 로고    scopus 로고
    • Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host
    • Odds F.C., et al. Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology 2000, 146:1881-1889.
    • (2000) Microbiology , vol.146 , pp. 1881-1889
    • Odds, F.C.1
  • 96
    • 84455161690 scopus 로고    scopus 로고
    • Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo
    • Lee K.K., et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 2011, 56:208-217.
    • (2011) Antimicrob. Agents Chemother. , vol.56 , pp. 208-217
    • Lee, K.K.1
  • 97
    • 0018101547 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation
    • Baker H., et al. Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J. Antibiot. (Tokyo) 1978, 31:539-545.
    • (1978) J. Antibiot. (Tokyo) , vol.31 , pp. 539-545
    • Baker, H.1
  • 98
    • 84887289007 scopus 로고    scopus 로고
    • Fungal iron availability during deep seated candidiasis defined by a complex interplay of systemic and local events
    • Potrykus J., et al. Fungal iron availability during deep seated candidiasis defined by a complex interplay of systemic and local events. PLoS Pathog. 2013, 9:e1003676.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003676
    • Potrykus, J.1
  • 99
    • 70350463600 scopus 로고    scopus 로고
    • A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections
    • Enjalbert B., et al. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect. Immun. 2009, 77:4847-4858.
    • (2009) Infect. Immun. , vol.77 , pp. 4847-4858
    • Enjalbert, B.1
  • 100
    • 84899847764 scopus 로고    scopus 로고
    • Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence
    • Delgado-Silva Y., et al. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence. PLoS ONE 2014, 9:e86270.
    • (2014) PLoS ONE , vol.9 , pp. e86270
    • Delgado-Silva, Y.1
  • 101
    • 0029645880 scopus 로고
    • The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors
    • Cutfield S.M., et al. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure 1995, 3:1261-1271.
    • (1995) Structure , vol.3 , pp. 1261-1271
    • Cutfield, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.