메뉴 건너뛰기




Volumn 33, Issue 1, 2016, Pages 107-124

Early dropout prediction using data mining: A case study with high school students

Author keywords

classification; educational data mining; grammar based genetic programming; predicting dropout

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); EDUCATION; EDUCATION COMPUTING; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; STUDENTS; TEACHING;

EID: 84958177306     PISSN: 02664720     EISSN: 14680394     Source Type: Journal    
DOI: 10.1111/exsy.12135     Document Type: Article
Times cited : (225)

References (57)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D., and, D. Kibler, (1991) Instance-based learning algorithms, Machine Learning, 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 3
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • Baker, R., and, K. Yacef, (2009) The state of educational data mining in 2009: a review and future visions, Journal of Educational Data Mining, 1, 3-17.
    • (2009) Journal of Educational Data Mining , vol.1 , pp. 3-17
    • Baker, R.1    Yacef, K.2
  • 5
    • 84855693023 scopus 로고    scopus 로고
    • Speeding up the evaluation phase of GP classification algorithms on GPUS
    • Cano, A., A. Zafra, and, S. Ventura, (2012) Speeding up the evaluation phase of GP classification algorithms on GPUs, Soft Computing, 16, 187-202.
    • (2012) Soft Computing , vol.16 , pp. 187-202
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 6
    • 84877703416 scopus 로고    scopus 로고
    • An interpretable classification rule mining algorithm
    • Cano, A., A. Zafra, and, S. Ventura, (2013) An interpretable classification rule mining algorithm, Information Sciences, 240, 1-20.
    • (2013) Information Sciences , vol.240 , pp. 1-20
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 9
    • 78049421754 scopus 로고    scopus 로고
    • A comparative analysis of machine learning techniques for student retention management
    • Delen, D., (2010) A comparative analysis of machine learning techniques for student retention management, Decision Support Systems, 49, 498-506.
    • (2010) Decision Support Systems , vol.49 , pp. 498-506
    • Delen, D.1
  • 12
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • Fernández, A., S. García, M.J. del Jesus, and, F. Herrera, (2008) A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets, Fuzzy Sets and Systems, 159, 2378-2398.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2378-2398
    • Fernández, A.1    García, S.2    Del Jesus, M.J.3    Herrera, F.4
  • 18
    • 84899642777 scopus 로고    scopus 로고
    • Causas del Fracaso Escolar; XIII Congreso de la Sociedad Española de Medicina del Adolescente
    • Hernández, M.M., (2002) Causas del Fracaso Escolar; XIII Congreso de la Sociedad Española de Medicina del Adolescente, España, 1-5.
    • (2002) España , pp. 1-5
    • Hernández, M.M.1
  • 19
    • 15544382682 scopus 로고    scopus 로고
    • Evolutionary rule mining in time series databases
    • Hetland, M.L., and, P. Saetrom, (2005) Evolutionary rule mining in time series databases, Machine Learning, 58, 107-125.
    • (2005) Machine Learning , vol.58 , pp. 107-125
    • Hetland, M.L.1    Saetrom, P.2
  • 21
    • 78651247660 scopus 로고    scopus 로고
    • Early prediction of student success: Mining students enrolment data
    • Kovacic, Z.J., (2010) Early prediction of student success: mining students enrolment data, Informing Science & IT Education Conference, 647-665.
    • (2010) Informing Science & IT Education Conference , pp. 647-665
    • Kovacic, Z.J.1
  • 23
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • López, V., A. Fernandez, J.G. Moreno-Torres, and, F. Herrera, (2012) Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics, Expert Systems with Applications, 39, 6585-6608.
    • (2012) Expert Systems with Applications , vol.39 , pp. 6585-6608
    • López, V.1    Fernandez, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 24
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • López, V., A. Fernandez, S. Garcia, V. Palade, and, F. Herrera, (2013a) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics, Information Sciences, 250, 113-141.
    • (2013) Information Sciences , vol.250 , pp. 113-141
    • López, V.1    Fernandez, A.2    Garcia, S.3    Palade, V.4    Herrera, F.5
  • 25
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • López, V., A. Fernandez, M.J. del Jesus, and, F. Herrera, (2013b) A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets, Knowledge-Based Systems, 38, 85-104.
    • (2013) Knowledge-Based Systems , vol.38 , pp. 85-104
    • López, V.1    Fernandez, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 26
    • 84911899147 scopus 로고    scopus 로고
    • On the Use of genetic programming for mining comprehensible rules in subgroup discovery
    • Luna, J.M., C. Romero, J.R. Romero, and, C. Ventura, (2014) On the Use of genetic programming for mining comprehensible rules in subgroup discovery, IEEE Transactions on Cybernetics, 44, 2329-2341.
    • (2014) IEEE Transactions on Cybernetics , vol.44 , pp. 2329-2341
    • Luna, J.M.1    Romero, C.2    Romero, J.R.3    Ventura, C.4
  • 27
    • 67650236153 scopus 로고    scopus 로고
    • Dropout prediction in e-learning courses through the combination of machine learning techniques
    • Lykourentzou, I., I. Giannoukos, V. Nikolopoulos, G. Mpardis, and, V. Loumos, (2009) Dropout prediction in e-learning courses through the combination of machine learning techniques, Computer & Education, 53, 950-965.
    • (2009) Computer & Education , vol.53 , pp. 950-965
    • Lykourentzou, I.1    Giannoukos, I.2    Nikolopoulos, V.3    Mpardis, G.4    Loumos, V.5
  • 28
    • 71549171729 scopus 로고    scopus 로고
    • Mining LMS data to develop an 'early warning system' for educators: A proof of concept
    • Macfadyen, L.P., and, S. Dawson, (2010) Mining LMS data to develop an 'early warning system' for educators: a proof of concept, Computer & Education, 54, 588-599.
    • (2010) Computer & Education , vol.54 , pp. 588-599
    • Macfadyen, L.P.1    Dawson, S.2
  • 31
    • 84876194131 scopus 로고    scopus 로고
    • Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
    • Marquez-Vera, C., A. Cano, C. Romero, and, S. Ventura, (2013) Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data, Applied Intelligence, 38, 315-330.
    • (2013) Applied Intelligence , vol.38 , pp. 315-330
    • Marquez-Vera, C.1    Cano, A.2    Romero, C.3    Ventura, S.4
  • 32
    • 84958173640 scopus 로고    scopus 로고
    • Predicting success, excellence, and retention from students' early course performance: Progress results from a data-mining-based decision support system in a first year tertiary education programme
    • Florida, US
    • Mellalieu, P.J., (2011) Predicting success, excellence, and retention from students' early course performance: progress results from a data-mining-based decision support system in a first year tertiary education programme. In International Conference of the International Council for Higher Education, Florida, US, 1-9.
    • (2011) International Conference of the International Council for Higher Education , pp. 1-9
    • Mellalieu, P.J.1
  • 36
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced datasets
    • Orriols-Puig, A., and, E. Bernadó-Mansilla, (2009) Evolutionary rule-based systems for imbalanced datasets, Soft Computing, 13, 213-225.
    • (2009) Soft Computing , vol.13 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 37
    • 84862117598 scopus 로고    scopus 로고
    • The use of genetic programming for the construction of a financial management model in an enterprise
    • Pan, W., (2012) The use of genetic programming for the construction of a financial management model in an enterprise, Applied Intelligence, 36, 271-279.
    • (2012) Applied Intelligence , vol.36 , pp. 271-279
    • Pan, W.1
  • 38
    • 67349250449 scopus 로고    scopus 로고
    • Evolving rule induction algorithms with multi-objective grammar-based genetic programming
    • Pappa, G.L., and, A.A. Freitas, (2009) Evolving rule induction algorithms with multi-objective grammar-based genetic programming, Knowledge and Information Systems, 19, 283-309.
    • (2009) Knowledge and Information Systems , vol.19 , pp. 283-309
    • Pappa, G.L.1    Freitas, A.A.2
  • 43
    • 33845663518 scopus 로고    scopus 로고
    • Educational data mining: A survey from 1995 to 2005
    • Romero, C., and, S. Ventura, (2007) Educational data mining: a survey from 1995 to 2005, Expert Systems with Applications, 1, 135-146.
    • (2007) Expert Systems with Applications , vol.1 , pp. 135-146
    • Romero, C.1    Ventura, S.2
  • 47
    • 0007314101 scopus 로고    scopus 로고
    • Spring retention revisited: RET=EId+(E+I+C)IV
    • Seidman, A., (1996) Spring retention revisited: RET=EId+(E+I+C)Iv, College and University, 71, 18-20.
    • (1996) College and University , vol.71 , pp. 18-20
    • Seidman, A.1
  • 48
    • 84938563193 scopus 로고
    • Dropout from higher education: A theoretical synthesis of recent research
    • Tinto, V., (1975) Dropout from higher education: a theoretical synthesis of recent research, Review of Educational Research, 45, 89-125.
    • (1975) Review of Educational Research , vol.45 , pp. 89-125
    • Tinto, V.1
  • 55
    • 84958545668 scopus 로고    scopus 로고
    • Predicting student performance from combined data sources
    • Peña-Ayala, A. (editors), Springer
    • Wolff, A., Z. Zdrahal, D. Herrmannova, and, P. Knoth, (2014) Predicting student performance from combined data sources. In, Peña-Ayala, A., (editors), Educational Data Mining, Springer, 175-202.
    • (2014) Educational Data Mining , pp. 175-202
    • Wolff, A.1    Zdrahal, Z.2    Herrmannova, D.3    Knoth, P.4
  • 56
    • 84906496187 scopus 로고    scopus 로고
    • Can online discussion participation predict group project performance? Investigating the roles of linguistic features and participation patterns
    • Yoo, J., and, J. Kim, (2014) Can online discussion participation predict group project performance? Investigating the roles of linguistic features and participation patterns, International Journal of Artificial Intelligence in Education, 24, 8-32.
    • (2014) International Journal of Artificial Intelligence in Education , vol.24 , pp. 8-32
    • Yoo, J.1    Kim, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.