메뉴 건너뛰기




Volumn 49, Issue 4, 2010, Pages 498-506

A comparative analysis of machine learning techniques for student retention management

Author keywords

Classification; Machine learning; Prediction; Retention management; Sensitivity analysis; Student attrition

Indexed keywords

ANALYTICAL MODEL; CLASSIFICATION; COMPARATIVE ANALYSIS; DATA MINING TECHNIQUES; DATA SETS; DECISION MAKERS; ENROLLMENT MANAGEMENT; FINANCIAL VARIABLES; HIGHER EDUCATION INSTITUTIONS; INDIVIDUAL MODELS; MACHINE LEARNING TECHNIQUES; MACHINE-LEARNING; PREDICTION; RETENTION MANAGEMENT; STUDENT RETENTION; WELLBEING;

EID: 78049421754     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2010.06.003     Document Type: Article
Times cited : (228)

References (46)
  • 2
    • 0032042402 scopus 로고    scopus 로고
    • Revising Tinto's interactionalist theory of student departure through theory elaboration: Examining the role of organizational attributes in the persistence process
    • J.B. Berger, and J.M. Braxton Revising Tinto's interactionalist theory of student departure through theory elaboration: examining the role of organizational attributes in the persistence process Research in Higher Education 39 2 1998 103 119
    • (1998) Research in Higher Education , vol.39 , Issue.2 , pp. 103-119
    • Berger, J.B.1    Braxton, J.M.2
  • 3
    • 0033475616 scopus 로고    scopus 로고
    • The role of student involvement and perceptions of integration in a causal model of student persistence
    • J.B. Berger, and J.F. Milem The role of student involvement and perceptions of integration in a causal model of student persistence Research in Higher Education 40 6 1999 641 664
    • (1999) Research in Higher Education , vol.40 , Issue.6 , pp. 641-664
    • Berger, J.B.1    Milem, J.F.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0010944392 scopus 로고
    • College persistence: Structural equations modeling test of an integrated model of student retention
    • A.F. Cabrera, A. Nora, and M.A. Castaneda College persistence: structural equations modeling test of an integrated model of student retention Journal of Higher Education 64 2 1993 123 139
    • (1993) Journal of Higher Education , vol.64 , Issue.2 , pp. 123-139
    • Cabrera, A.F.1    Nora, A.2    Castaneda, M.A.3
  • 7
    • 33847252482 scopus 로고    scopus 로고
    • Analysis of institutionally specific retention research: A comparison between survey and institutional database methods
    • A.L. Caison Analysis of institutionally specific retention research: a comparison between survey and institutional database methods Research in Higher Education 48 4 2007 435 449
    • (2007) Research in Higher Education , vol.48 , Issue.4 , pp. 435-449
    • Caison, A.L.1
  • 10
    • 32344437581 scopus 로고    scopus 로고
    • Predictors of academic achievement and retention among college freshmen: A longitudinal study
    • S.M. Deberard, G.I. Julka, and L. Deana Predictors of academic achievement and retention among college freshmen: a longitudinal study College Student Journal 38 1 2004 66 81
    • (2004) College Student Journal , vol.38 , Issue.1 , pp. 66-81
    • Deberard, S.M.1    Julka, G.I.2    Deana, L.3
  • 11
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • D. Delen, G. Walker, and A. Kadam Predicting breast cancer survivability: a comparison of three data mining methods Artificial Intelligence in Medicine 34 2 2004 113 127
    • (2004) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 12
    • 34547697309 scopus 로고    scopus 로고
    • Movie forecast guru: A web-based DSS for Hollywood managers
    • D. Delen, R. Sharda, and P. Kumar Movie forecast guru: a web-based DSS for Hollywood managers Decision Support Systems 43 4 2007 1151 1170
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1151-1170
    • Delen, D.1    Sharda, R.2    Kumar, P.3
  • 13
    • 33744783380 scopus 로고    scopus 로고
    • Institutional selectivity and institutional expenditures: Examining organizational factors that contribute to retention and graduation
    • A.M. Gansemer-Topf, and J.H. Schuh Institutional selectivity and institutional expenditures: examining organizational factors that contribute to retention and graduation Research in Higher Education 47 6 2006 613 642
    • (2006) Research in Higher Education , vol.47 , Issue.6 , pp. 613-642
    • Gansemer-Topf, A.M.1    Schuh, J.H.2
  • 15
    • 67650246505 scopus 로고    scopus 로고
    • 3rd ed. Prentice Hall Publishing Englewood Cliffs, New Jersey
    • S. Haykin Neural Networks and Learning Machines 3rd ed. 2008 Prentice Hall Publishing Englewood Cliffs, New Jersey
    • (2008) Neural Networks and Learning Machines
    • Haykin, S.1
  • 17
    • 29144463807 scopus 로고    scopus 로고
    • Measuring determinants of student return vs. dropout/stopout vs. transfer: A first-to-second year analysis of new freshmen
    • S. Herzog Measuring determinants of student return vs. dropout/stopout vs. transfer: a first-to-second year analysis of new freshmen Research in Higher Education 46 8 2005 883 928
    • (2005) Research in Higher Education , vol.46 , Issue.8 , pp. 883-928
    • Herzog, S.1
  • 18
    • 5444265021 scopus 로고
    • The effects of the composition of a financial aids package on student retention
    • S.K. Hochstein, and R.R. Butler The effects of the composition of a financial aids package on student retention Journal of Student Financial Aid 13 1 1983 21 27
    • (1983) Journal of Student Financial Aid , vol.13 , Issue.1 , pp. 21-27
    • Hochstein, S.K.1    Butler, R.R.2
  • 19
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feed-forward network
    • K. Hornik, M. Stinchcombe, and H. White Universal approximation of an unknown mapping and its derivatives using multilayer feed-forward network Neural Networks 3 1990 359 366
    • (1990) Neural Networks , vol.3 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 33748325693 scopus 로고    scopus 로고
    • Studying attrition and degree completion behavior among first-generation college students in the United States
    • T.T. Ishitani Studying attrition and degree completion behavior among first-generation college students in the United States Journal of Higher Education 77 5 2006 861 885
    • (2006) Journal of Higher Education , vol.77 , Issue.5 , pp. 861-885
    • Ishitani, T.T.1
  • 21
    • 0038636391 scopus 로고    scopus 로고
    • A comparative assessment of classification algorithms
    • M.Y. Kiang A comparative assessment of classification algorithms Decision Support Systems 35 2003 441 454
    • (2003) Decision Support Systems , vol.35 , pp. 441-454
    • Kiang, M.Y.1
  • 22
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann San Mateo, CA
    • R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection The Proceedings of the 14th International Conference on AI (IJCAI) 1995 Morgan Kaufmann San Mateo, CA 1137 1145
    • (1995) The Proceedings of the 14th International Conference on AI (IJCAI) , pp. 1137-1145
    • Kohavi, R.1
  • 23
    • 3042710687 scopus 로고    scopus 로고
    • Institutional factors affecting student retention
    • L.K. Lau Institutional factors affecting student retention Education 124 1 2003 126 137
    • (2003) Education , vol.124 , Issue.1 , pp. 126-137
    • Lau, L.K.1
  • 24
    • 33744526493 scopus 로고    scopus 로고
    • Bagging and boosting classification trees to predict churn
    • A. Lemmens, and C. Croux Bagging and boosting classification trees to predict churn Journal of Marketing Research 43 2 2006 276 286
    • (2006) Journal of Marketing Research , vol.43 , Issue.2 , pp. 276-286
    • Lemmens, A.1    Croux, C.2
  • 26
    • 33845969814 scopus 로고    scopus 로고
    • Student attrition and academic and social integration: Application of Tinto's model at the university of Papua New Guinea
    • M.A. Mannan Student attrition and academic and social integration: application of Tinto's model at the university of Papua New Guinea Higher Education 53 2 2007 147 165
    • (2007) Higher Education , vol.53 , Issue.2 , pp. 147-165
    • Mannan, M.A.1
  • 27
    • 85009404831 scopus 로고    scopus 로고
    • Analysis of variables: Predicting sophomore persistence using logistic regression analysis at the University of South Florida
    • T.E. Miller, and C.H. Herreid Analysis of variables: predicting sophomore persistence using logistic regression analysis at the University of South Florida College and University 85 1 2010 2 11
    • (2010) College and University , vol.85 , Issue.1 , pp. 2-11
    • Miller, T.E.1    Herreid, C.H.2
  • 28
    • 77955092856 scopus 로고    scopus 로고
    • Using a model that predicts individual student attrition to intervene with those who are most at risk
    • T.E. Miller, and T.M. Tyree Using a model that predicts individual student attrition to intervene with those who are most at risk College and University 84 3 2009 12 21
    • (2009) College and University , vol.84 , Issue.3 , pp. 12-21
    • Miller, T.E.1    Tyree, T.M.2
  • 29
    • 37049005791 scopus 로고    scopus 로고
    • Current trends in student retention: A literature review
    • K.B. Porter Current trends in student retention: a literature review Teaching and Learning in Nursing 3 1 2008 3 15
    • (2008) Teaching and Learning in Nursing , vol.3 , Issue.1 , pp. 3-15
    • Porter, K.B.1
  • 30
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan Induction of decision trees Machine Learning 1 1986 81 106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 32
    • 0037093163 scopus 로고    scopus 로고
    • Making best use of model evaluations to compute sensitivity indices
    • A. Saltelli Making best use of model evaluations to compute sensitivity indices Computer Physics Communications 145 2002 280 297
    • (2002) Computer Physics Communications , vol.145 , pp. 280-297
    • Saltelli, A.1
  • 35
    • 28544450051 scopus 로고    scopus 로고
    • Predicting box-office success of motion pictures with neural networks
    • R. Sharda, and D. Delen Predicting box-office success of motion pictures with neural networks Expert Systems with Applications 30 2 2006 243 254
    • (2006) Expert Systems with Applications , vol.30 , Issue.2 , pp. 243-254
    • Sharda, R.1    Delen, D.2
  • 36
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • C. Shearer The CRISP-DM model: the new blueprint for data mining Journal of Data Warehousing 5 2000 13 22
    • (2000) Journal of Data Warehousing , vol.5 , pp. 13-22
    • Shearer, C.1
  • 39
    • 4043088578 scopus 로고    scopus 로고
    • What satisfies students? Mining student opinion data with regression and decision tree analysis
    • E.H. Thomas, and N. Galambos What satisfies students? Mining student opinion data with regression and decision tree analysis Research in Higher Education 45 3 2004 251 269
    • (2004) Research in Higher Education , vol.45 , Issue.3 , pp. 251-269
    • Thomas, E.H.1    Galambos, N.2
  • 42
    • 0031281558 scopus 로고    scopus 로고
    • Classrooms as Communities: Exploring the Educational Character of Student Persistence
    • V. Tinto Classroom as communities: exploring the educational character of student persistence Journal of Higher Education 68 6 1997 599 623 (Pubitemid 127145621)
    • (1997) Journal of Higher Education , vol.68 , Issue.6 , pp. 599-623
    • Tinto, V.1
  • 43
    • 51949102480 scopus 로고    scopus 로고
    • Predicting academic performance by data mining methods
    • J.P. Vandamme, N. Meskens, and J.F. Superby Predicting academic performance by data mining methods Education Economics 15 4 2007 405 419
    • (2007) Education Economics , vol.15 , Issue.4 , pp. 405-419
    • Vandamme, J.P.1    Meskens, N.2    Superby, J.F.3
  • 44
    • 78049417983 scopus 로고    scopus 로고
    • A strategy for improving freshman college retention
    • C.P. Veenstra A strategy for improving freshman college retention Journal for Quality and Participation 31 4 2009 19 23
    • (2009) Journal for Quality and Participation , vol.31 , Issue.4 , pp. 19-23
    • Veenstra, C.P.1
  • 45
  • 46
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • R.L. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decision Support Systems 11 1994 545 557
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.