메뉴 건너뛰기




Volumn 21, Issue 1, 2013, Pages 135-146

Web usage mining for predicting final marks of students that use Moodle courses

Author keywords

classifying students; educational data mining; learning management systems; predicting marks

Indexed keywords

CLASSIFICATION METHODS; CLASSIFIER MODELS; COURSEWARE; DATA MINING TECHNIQUES; DISCRETIZATIONS; E-LEARNING SYSTEMS; EDUCATIONAL DATA MINING; EDUCATIONAL ENVIRONMENT; FUZZY RULE INDUCTION; LEARNING MANAGEMENT SYSTEM; NUMERICAL DATA; PRE-PROCESSING; PREDICTING MARKS; UNIVERSITY STUDENTS; USAGE DATA; WEB USAGE MINING;

EID: 84872707825     PISSN: 10613773     EISSN: 10990542     Source Type: Journal    
DOI: 10.1002/cae.20456     Document Type: Article
Times cited : (222)

References (84)
  • 1
    • 85013582692 scopus 로고    scopus 로고
    • Adaptive and intelligent web-based educational systems
    • P. Brusilovsky, and, C. Peylo, Adaptive and intelligent web-based educational systems, Int J Artif Intell Educ 13 (2003), 156-169.
    • (2003) Int J Artif Intell Educ , vol.13 , pp. 156-169
    • Brusilovsky, P.1    Peylo, C.2
  • 3
    • 84872716268 scopus 로고    scopus 로고
    • BlackBoard [Accessed 23 March 2010]
    • BlackBoard. http://www.blackboard.com/ [Accessed 23 March 2010].
  • 4
    • 84872729614 scopus 로고    scopus 로고
    • TopClass [Accessed 23 March 2010]
    • TopClass. http://www.topclass.nl/ [Accessed 23 March 2010].
  • 5
    • 84872695243 scopus 로고    scopus 로고
    • Ilias [Accessed 23 March 2010]
    • Ilias. http://www.ilias.de/ [Accessed 23 March 2010].
  • 6
    • 84872707663 scopus 로고    scopus 로고
    • Claroline [Accessed 23 March 2010]
    • Claroline. http://www.claroline.net/ [Accessed 23 March 2010].
  • 8
    • 33646871997 scopus 로고    scopus 로고
    • Some useful tactics to modify, map and mine data from intelligent tutors
    • J. Mostow, and, J. Beck, Some useful tactics to modify, map and mine data from intelligent tutors, Nat Lang Eng 12 (2006), 195-208.
    • (2006) Nat Lang Eng , vol.12 , pp. 195-208
    • Mostow, J.1    Beck, J.2
  • 10
    • 14744278261 scopus 로고    scopus 로고
    • Using data mining as a strategy for assessing asynchronous discussion forums
    • L. Dringus, and, T. Ellis, Using data mining as a strategy for assessing asynchronous discussion forums, Comput Educ J 45 (2005), 141-160.
    • (2005) Comput Educ J , vol.45 , pp. 141-160
    • Dringus, L.1    Ellis, T.2
  • 13
    • 33845663518 scopus 로고    scopus 로고
    • Educational data mining: A survey from 1995 to 2005
    • C. Romero, and, S. Ventura, Educational data mining: A survey from 1995 to 2005, Expert Syst Appl 33 (2007), 135-146.
    • (2007) Expert Syst Appl , vol.33 , pp. 135-146
    • Romero, C.1    Ventura, S.2
  • 14
    • 84933588302 scopus 로고    scopus 로고
    • Educational data mining: A review of the state-of-the-art
    • (in press).
    • C. Romero, and, S. Ventura, Educational data mining: A review of the state-of-the-art, IEEE Trans Syst Man Cybern C (in press).
    • IEEE Trans Syst Man Cybern C
    • Romero, C.1    Ventura, S.2
  • 19
    • 0034347058 scopus 로고    scopus 로고
    • Discovering decision knowledge from web log portfolio for managing classroom processes by applying decision tree and data cube technology
    • G. Chen, C. Liu, K. Ou, and, B. Liu, Discovering decision knowledge from web log portfolio for managing classroom processes by applying decision tree and data cube technology, J Educ Comput Res 23 (2000), 305-332.
    • (2000) J Educ Comput Res , vol.23 , pp. 305-332
    • Chen, G.1    Liu, C.2    Ou, K.3    Liu, B.4
  • 23
    • 46949106309 scopus 로고    scopus 로고
    • XCS for fusing multi-spectral data in automatic target recognition
    • A. Gandhe, S.-H. Yu, R. Mehra, and, R. E. Smith, XCS for fusing multi-spectral data in automatic target recognition, Stud Comput Intell 125 (2008), 147-167.
    • (2008) Stud Comput Intell , vol.125 , pp. 147-167
    • Gandhe, A.1    Yu, S.-H.2    Mehra, R.3    Smith, R.E.4
  • 24
    • 0028752806 scopus 로고
    • Predicting performance from test scores using backpropagation and counterpropagation
    • L. Fausett, and, W. Elwasif, Predicting performance from test scores using backpropagation and counterpropagation, In: IEEE Congress on Computational Intelligence, 1994, pp 3398-3402.
    • (1994) IEEE Congress on Computational Intelligence , pp. 3398-3402
    • Fausett, L.1    Elwasif, W.2
  • 25
    • 77958152987 scopus 로고    scopus 로고
    • Predicting student outcomes using discriminant function analysis
    • California
    • D. Martínez, Predicting student outcomes using discriminant function analysis, In: Annual Meeting of the Research and Planning Group, California, 2001, pp 163-173.
    • (2001) Annual Meeting of the Research and Planning Group , pp. 163-173
    • Martínez, D.1
  • 26
    • 33645432436 scopus 로고    scopus 로고
    • Using genetic algorithms for data mining optimization in an educational web-based system
    • B. Minaei-Bidgoli, and, W. Punch, Using genetic algorithms for data mining optimization in an educational web-based system. Genetic and Evolutionary Computation Conference, Part II, 2003, pp 2252-2263.
    • (2003) Genetic and Evolutionary Computation Conference , Issue.PART. II , pp. 2252-2263
    • Minaei-Bidgoli, B.1    Punch, W.2
  • 27
    • 61849186005 scopus 로고    scopus 로고
    • Determination of factors influencing the achievement of the first-year university students using data mining methods
    • J. F. Superby, J. P. Vandamme, and, N. Meskens, In: Determination of factors influencing the achievement of the first-year university students using data mining methods, Workshop Educ Data Min, 2006, pp 37-44.
    • (2006) Workshop Educ Data Min , pp. 37-44
    • Superby, J.F.1    Vandamme, J.P.2    Meskens, N.3
  • 32
    • 2942552288 scopus 로고    scopus 로고
    • Predicting students' performance in distance learning using machine learning techniques
    • S. B. Kotsiantis, C. J. Pierrakeas, and, P. E. Pintelas, Predicting students' performance in distance learning using machine learning techniques, Appl Artif Intell 18 (2004), 411-426.
    • (2004) Appl Artif Intell , vol.18 , pp. 411-426
    • Kotsiantis, S.B.1    Pierrakeas, C.J.2    Pintelas, P.E.3
  • 38
    • 33748608534 scopus 로고    scopus 로고
    • A study on the application of Classification and Regression Trees (CART) via an example of sweet potato data
    • M. Lee, A study on the application of Classification and Regression Trees (CART) via an example of sweet potato data, J Agr Assoc China 17 (1996), 61-68.
    • (1996) J Agr Assoc China , vol.17 , pp. 61-68
    • Lee, M.1
  • 39
    • 70349764965 scopus 로고    scopus 로고
    • The application of decision tree in the research of anemia among rural children under 3-year-old
    • Y. G. Ma, Y. X. Bi, H. Yan, L. N. Deng, W. F. Liang, B. Wang, and, X. L. Zhang, The application of decision tree in the research of anemia among rural children under 3-year-old, Chinese J Prev Med 43 (2009), 434-437.
    • (2009) Chinese J Prev Med , vol.43 , pp. 434-437
    • Ma, Y.G.1    Bi, Y.X.2    Yan, H.3    Deng, L.N.4    Liang, W.F.5    Wang, B.6    Zhang, X.L.7
  • 40
    • 70449707763 scopus 로고    scopus 로고
    • Internet traffic classification using C4.5 decision tree
    • P. Xu, and, S. Lin, Internet traffic classification using C4.5 decision tree, J Softw 20 (2009), 2692-2704.
    • (2009) J Softw , vol.20 , pp. 2692-2704
    • Xu, P.1    Lin, S.2
  • 41
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark, and, T. Niblett, The CN2 induction algorithm, Mach Learn 3 (1989), 261-283.
    • (1989) Mach Learn , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 43
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. W. Wilson, Classifier fitness based on accuracy, Evolut Comput 3 (1995), 149-175.
    • (1995) Evolut Comput , vol.3 , pp. 149-175
    • Wilson, S.W.1
  • 44
    • 84971641220 scopus 로고
    • SIA A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts
    • G. Venturini, SIA A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts, In: Conference on Machine Learning, 1993, pp 280-296.
    • (1993) Conference on Machine Learning , pp. 280-296
    • Venturini, G.1
  • 45
    • 0028582717 scopus 로고
    • Using real-valued genetic algorithms to evolve rule sets for classification
    • Orlando
    • A. L. Corcoran, and, S. Sen, Using real-valued genetic algorithms to evolve rule sets for classification, In: Conference on Evolutionary Computation, Orlando, 1994, pp 120-124.
    • (1994) Conference on Evolutionary Computation , pp. 120-124
    • Corcoran, A.L.1    Sen, S.2
  • 46
    • 77249174228 scopus 로고    scopus 로고
    • A survey on the application of genetic programming to classification
    • P. G. Espejo, S. Ventura, and, F. Herrera, A survey on the application of genetic programming to classification, IEEE Trans Syst Man Cybern C 40 (2010), 121-144.
    • (2010) IEEE Trans Syst Man Cybern C , vol.40 , pp. 121-144
    • Espejo, P.G.1    Ventura, S.2    Herrera, F.3
  • 49
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy, current research trends and prospects
    • F. Herrera, Genetic fuzzy systems: Taxonomy, current research trends and prospects, Evol Intell 1 (2008), 27-46.
    • (2008) Evol Intell , vol.1 , pp. 27-46
    • Herrera, F.1
  • 50
    • 34548389246 scopus 로고    scopus 로고
    • Boosting fuzzy rules in classification problems under single-winner inference
    • L. Sánchez, and, J. Otero, Boosting fuzzy rules in classification problems under single-winner inference, Int J Intell Syst 22 (2007), 1021-1034.
    • (2007) Int J Intell Syst , vol.22 , pp. 1021-1034
    • Sánchez, L.1    Otero, J.2
  • 51
    • 0035426475 scopus 로고    scopus 로고
    • Combining GP operators with SA search to evolve fuzzy rule based classifiers
    • L. Sánchez, I. Couso, and, J. A. Corrales, Combining GP operators with SA search to evolve fuzzy rule based classifiers, Inform Sci 136 (2001), 175-191.
    • (2001) Inform Sci , vol.136 , pp. 175-191
    • Sánchez, L.1    Couso, I.2    Corrales, J.A.3
  • 54
    • 68149105929 scopus 로고    scopus 로고
    • Protein superfamily classification using fuzzy rule-based classifier
    • E. G. Mansoori, M. J. Zolghadri, and, S. D. Katebi, Protein superfamily classification using fuzzy rule-based classifier, IEEE Trans Nanobiosci 8 (2009), 92-99.
    • (2009) IEEE Trans Nanobiosci , vol.8 , pp. 92-99
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 56
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. F. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6 (1993), 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 57
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptative networks
    • D. S. Broomhead, and, D. Lowe, Multivariable functional interpolation and adaptative networks, Complex Syst 11 (1988), 321-355.
    • (1988) Complex Syst , vol.11 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 58
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao, Evolving artificial neural networks, Proc IEEE 87 (1999), 1423-1447.
    • (1999) Proc IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 60
    • 33845420416 scopus 로고    scopus 로고
    • A HMM-RBFN hybrid classifier for surface electromyography signals classification
    • F. Li, R. Wang, and, L. Jiang, A HMM-RBFN hybrid classifier for surface electromyography signals classification, Chinese J Rehabil Med 21 (2006), 1016-1018.
    • (2006) Chinese J Rehabil Med , vol.21 , pp. 1016-1018
    • Li, F.1    Wang, R.2    Jiang, L.3
  • 62
    • 84976696199 scopus 로고
    • Predicting student success in an introductory programming course
    • T. Hostetler, Predicting student success in an introductory programming course, ACM SIGCSE Bull 15 (1983), 40-43.
    • (1983) ACM SIGCSE Bull , vol.15 , pp. 40-43
    • Hostetler, T.1
  • 65
    • 84872723172 scopus 로고    scopus 로고
    • Predicting academic performance in the school of computing & information technology
    • Indianapolis, USA
    • P. Golding, and, S. NcNamarah, Predicting academic performance in the school of computing & information technology, In: Proceedings of the ASEE/IEEE Frontiers in Education Conference, Indianapolis, USA, 2005, pp 16-20.
    • (2005) Proceedings of the ASEE/IEEE Frontiers in Education Conference , pp. 16-20
    • Golding, P.1    Ncnamarah, S.2
  • 66
    • 78651252829 scopus 로고    scopus 로고
    • Predicting student's academic performance: Comparing artificial neural networks, decision tree and linear regression
    • Kuala Lumpur, Malaysia
    • Z. Ibrahim, and, D. Rusli, Predicting student's academic performance: Comparing artificial neural networks, decision tree and linear regression. Annual SAS Malaysia Forum. Kuala Lumpur, Malaysia, 2007, pp 1-6.
    • (2007) Annual SAS Malaysia Forum , pp. 1-6
    • Ibrahim, Z.1    Rusli, D.2
  • 69
    • 33746339502 scopus 로고    scopus 로고
    • Comparison of machine learning methods for intelligent tutoring systems
    • Taiwan
    • W. Hämäläinen, and, M. Vinni, Comparison of machine learning methods for intelligent tutoring systems, In: Conference Intelligent Tutoring Systems, Taiwan, 2006, pp 525-534.
    • (2006) Conference Intelligent Tutoring Systems , pp. 525-534
    • Hämäläinen, W.1    Vinni, M.2
  • 70
    • 46249087269 scopus 로고    scopus 로고
    • Testing attribute selection algorithms for classification performance on real data
    • London, UK
    • C. Mihaescu, and, D. Burdescu, Testing attribute selection algorithms for classification performance on real data, In: Proceedings of the IEEE Conference Intelligent Systems, London, UK, 2006, pp 581-586.
    • (2006) Proceedings of the IEEE Conference Intelligent Systems , pp. 581-586
    • Mihaescu, C.1    Burdescu, D.2
  • 72
    • 37249033719 scopus 로고    scopus 로고
    • Eliciting motivation knowledge from log files towards motivation diagnosis for adaptive systems
    • Corfu, Greece
    • M. Cocea, and, S. Weibelzahl, Eliciting motivation knowledge from log files towards motivation diagnosis for adaptive systems, In: Proc 11th Int Conference on User Modelling, Corfu, Greece, 2007, pp 197-206.
    • (2007) Proc 11th Int Conference on User Modelling , pp. 197-206
    • Cocea, M.1    Weibelzahl, S.2
  • 73
    • 84872724453 scopus 로고    scopus 로고
    • Weka [Accessed 23 March 2010]
    • Weka. http://www.cs.waikato.ac.nz/ml/weka/ [Accessed 23 March 2010].
  • 74
    • 84872728852 scopus 로고    scopus 로고
    • RapidMiner [Accessed 23 March 2010]
    • RapidMiner. http://rapid-i.com/ [Accessed 23 March 2010].
  • 75
    • 84872702673 scopus 로고    scopus 로고
    • KEEL [Accessed 23 March 2010]
    • KEEL. http://www.keel.es/ [Accessed 23 March 2010].
  • 77
    • 84872722568 scopus 로고    scopus 로고
    • Factors affecting effectiveness in e-learning: An analysis in production management courses
    • (in press).
    • E. Martínez, Factors affecting effectiveness in e-learning: An analysis in production management courses, Comput Appl Eng Educ (in press).
    • Comput Appl Eng Educ
    • Martínez, E.1
  • 78
    • 70449825954 scopus 로고    scopus 로고
    • Using mobile and web-based computerized tests to evaluate university students
    • C. Romero, S. Ventura, and, P. de Bra, Using mobile and web-based computerized tests to evaluate university students, Comput Appl Eng Educ 17 (2009), 435-447.
    • (2009) Comput Appl Eng Educ , vol.17 , pp. 435-447
    • Romero, C.1    Ventura, S.2    De Bra, P.3
  • 79
    • 43549125222 scopus 로고    scopus 로고
    • Data mining in course management systems: Moodle case study and tutorial
    • C. Romero, S. Ventura, and, E. García, Data mining in course management systems: Moodle case study and tutorial, Comput Educ 51 (2008), 368-384.
    • (2008) Comput Educ , vol.51 , pp. 368-384
    • Romero, C.1    Ventura, S.2    García, E.3
  • 83
    • 85139983802 scopus 로고
    • Supervised and Unsupervised Discretization of Continuous Features
    • San Francisco
    • J. Dougherty, M. Kohavi, and, M. Sahami, Supervised and Unsupervised Discretization of Continuous Features, In: Conference on Machine Learning, San Francisco, 1995, pp 194-202.
    • (1995) Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, M.2    Sahami, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.