-
1
-
-
33846899456
-
Restoration of p53 function leads to tumour regression in vivo
-
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature (2007) 445:661-5. doi:10.1038/nature05541
-
(2007)
Nature
, vol.445
, pp. 661-665
-
-
Ventura, A.1
Kirsch, D.G.2
McLaughlin, M.E.3
Tuveson, D.A.4
Grimm, J.5
Lintault, L.6
-
2
-
-
33845611951
-
Modeling the therapeutic efficacy of p53 restoration in tumors
-
Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell (2006) 127:1323-34. doi:10.1016/j.cell.2006.12.007
-
(2006)
Cell
, vol.127
, pp. 1323-1334
-
-
Martins, C.P.1
Brown-Swigart, L.2
Evan, G.I.3
-
3
-
-
33846937033
-
Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
-
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature (2007) 445:656-60. doi:10.1038/nature05529
-
(2007)
Nature
, vol.445
, pp. 656-660
-
-
Xue, W.1
Zender, L.2
Miething, C.3
Dickins, R.A.4
Hernando, E.5
Krizhanovsky, V.6
-
4
-
-
84905124070
-
Mutant p53 reactivation by small molecules makes its way to the clinic
-
Bykov VJN, Wiman KG. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett (2014) 588:2622-7. doi:10.1016/j.febslet.2014.04.017
-
(2014)
FEBS Lett
, vol.588
, pp. 2622-2627
-
-
Bykov, V.J.N.1
Wiman, K.G.2
-
5
-
-
84875740314
-
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
-
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal (2013) 6:l1. doi:10.1126/scisignal.2004088
-
(2013)
Sci Signal
, vol.6
, pp. 11
-
-
Gao, J.1
Aksoy, B.A.2
Dogrusoz, U.3
Dresdner, G.4
Gross, B.5
Sumer, S.O.6
-
6
-
-
84906084536
-
Limiting the power of p53 through the ubiquitin proteasome pathway
-
Pant V, Lozano G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev (2014) 28:1739-51. doi:10.1101/gad.247452.114
-
(2014)
Genes Dev
, vol.28
, pp. 1739-1751
-
-
Pant, V.1
Lozano, G.2
-
7
-
-
77449127476
-
Ubiquitin-independent p53 proteasomal degradation
-
Tsvetkov P, Reuven N, Shaul Y. Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ (2009) 17:103-8. doi:10.1038/cdd.2009.67
-
(2009)
Cell Death Differ
, vol.17
, pp. 103-108
-
-
Tsvetkov, P.1
Reuven, N.2
Shaul, Y.3
-
8
-
-
77955858336
-
Posttranslational modification of p53: cooperative integrators of function
-
Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol (2009) 1:a000950. doi:10.1101/cshperspect.a000950
-
(2009)
Cold Spring Harb Perspect Biol
, vol.1
-
-
Meek, D.W.1
Anderson, C.W.2
-
9
-
-
80052728974
-
p53 regulation by ubiquitin
-
Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett (2011) 585:2803-9. doi:10.1016/j.febslet.2011.05.022
-
(2011)
FEBS Lett
, vol.585
, pp. 2803-2809
-
-
Brooks, C.L.1
Gu, W.2
-
10
-
-
0030965946
-
Regulation of p53 stability by Mdm2
-
Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature (1997) 387:299-303. doi:10.1038/387299a0
-
(1997)
Nature
, vol.387
, pp. 299-303
-
-
Kubbutat, M.H.1
Jones, S.N.2
Vousden, K.H.3
-
11
-
-
0030905284
-
Mdm2 promotes the rapid degradation of p53
-
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature (1997) 387:296-9. doi:10.1038/387296a0
-
(1997)
Nature
, vol.387
, pp. 296-299
-
-
Haupt, Y.1
Maya, R.2
Kazaz, A.3
Oren, M.4
-
12
-
-
0348134742
-
Mono-versus polyubiquitination: differential control of p53 fate by Mdm2
-
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science (2003) 302:1972-5. doi:10.1126/science.1091362
-
(2003)
Science
, vol.302
, pp. 1972-1975
-
-
Li, M.1
Brooks, C.L.2
Wu-Baer, F.3
Chen, D.4
Baer, R.5
Gu, W.6
-
13
-
-
84929353743
-
The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization
-
Leslie PL, Ke H, Zhang Y. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem (2015) 290:12941-50. doi:10.1074/jbc. M115.644435
-
(2015)
J Biol Chem
, vol.290
, pp. 12941-12950
-
-
Leslie, P.L.1
Ke, H.2
Zhang, Y.3
-
14
-
-
31544457877
-
p53 ubiquitination: Mdm2 and beyond
-
Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell (2006) 21:307-15. doi:10.1016/j.molcel.2006.01.020
-
(2006)
Mol Cell
, vol.21
, pp. 307-315
-
-
Brooks, C.L.1
Gu, W.2
-
16
-
-
0028982932
-
A novel p16INK4A transcript
-
Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, et al. A novel p16INK4A transcript. Cancer Res (1995) 55:2995-7.
-
(1995)
Cancer Res
, vol.55
, pp. 2995-2997
-
-
Mao, L.1
Merlo, A.2
Bedi, G.3
Shapiro, G.I.4
Edwards, C.D.5
Rollins, B.J.6
-
17
-
-
0029060657
-
Complex structure and regulation of the P16 (MTS1) locus
-
Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, et al. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res (1995) 55:2988-94.
-
(1995)
Cancer Res
, vol.55
, pp. 2988-2994
-
-
Stone, S.1
Jiang, P.2
Dayananth, P.3
Tavtigian, S.V.4
Katcher, H.5
Parry, D.6
-
18
-
-
0032169516
-
The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2
-
Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J (1998) 17:5001-14. doi:10.1093/emboj/17.17.5001
-
(1998)
EMBO J
, vol.17
, pp. 5001-5014
-
-
Stott, F.J.1
Bates, S.2
James, M.C.3
McConnell, B.B.4
Starborg, M.5
Brookes, S.6
-
19
-
-
0033521621
-
Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53
-
Honda R, Yasuda H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J (1999) 18:22-7. doi:10.1093/emboj/18.1.22
-
(1999)
EMBO J
, vol.18
, pp. 22-27
-
-
Honda, R.1
Yasuda, H.2
-
20
-
-
0034193492
-
Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization
-
Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH. Contribution of two independent MDM2-binding domains in p14(ARF) to p53 stabilization. Curr Biol (2000) 10:539-42. doi:10.1016/S0960-9822(00)00472-3
-
(2000)
Curr Biol
, vol.10
, pp. 539-542
-
-
Lohrum, M.A.1
Ashcroft, M.2
Kubbutat, M.H.3
Vousden, K.H.4
-
21
-
-
10744221485
-
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
-
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science (2004) 303:844-8. doi:10.1126/science.1092472
-
(2004)
Science
, vol.303
, pp. 844-848
-
-
Vassilev, L.T.1
Vu, B.T.2
Graves, B.3
Carvajal, D.4
Podlaski, F.5
Filipovic, Z.6
-
22
-
-
33645511223
-
Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3
-
Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res (2006) 66:3169-76. doi:10.1158/0008-5472.CAN-05-3832
-
(2006)
Cancer Res
, vol.66
, pp. 3169-3176
-
-
Patton, J.T.1
Mayo, L.D.2
Singhi, A.D.3
Gudkov, A.V.4
Stark, G.R.5
Jackson, M.W.6
-
23
-
-
33845256980
-
MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin
-
Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem (2006) 281:33030-5. doi:10.1074/jbc. C600147200
-
(2006)
J Biol Chem
, vol.281
, pp. 33030-33035
-
-
Hu, B.1
Gilkes, D.M.2
Farooqi, B.3
Sebti, S.M.4
Chen, J.5
-
24
-
-
33845251005
-
Hdmx modulates the outcome of p53 activation in human tumor cells
-
Wade M, Wong ET, Tang M, Stommel JM, Wahl GM. Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem (2006) 281:33036-44. doi:10.1074/jbc. M605405200
-
(2006)
J Biol Chem
, vol.281
, pp. 33036-33044
-
-
Wade, M.1
Wong, E.T.2
Tang, M.3
Stommel, J.M.4
Wahl, G.M.5
-
25
-
-
77951224332
-
Identification and characterization of the first small molecule inhibitor of MDMX
-
Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM, Zhu F, et al. Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem (2010) 285:10786-96. doi:10.1074/jbc. M109.056747
-
(2010)
J Biol Chem
, vol.285
, pp. 10786-10796
-
-
Reed, D.1
Shen, Y.2
Shelat, A.A.3
Arnold, L.A.4
Ferreira, A.M.5
Zhu, F.6
-
26
-
-
77953492371
-
Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery
-
Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Dömling A, et al. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle (2010) 9:1104-11. doi:10.4161/cc.9.6.10956
-
(2010)
Cell Cycle
, vol.9
, pp. 1104-1111
-
-
Popowicz, G.M.1
Czarna, A.2
Wolf, S.3
Wang, K.4
Wang, W.5
Dömling, A.6
-
27
-
-
84865149674
-
Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay
-
Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R, Prives C, et al. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov (2011) 1:312-25. doi:10.1158/2159-8290.CD-11-0104
-
(2011)
Cancer Discov
, vol.1
, pp. 312-325
-
-
Herman, A.G.1
Hayano, M.2
Poyurovsky, M.V.3
Shimada, K.4
Skouta, R.5
Prives, C.6
-
28
-
-
84946606507
-
Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy
-
Pellegrino M, Mancini F, Lucà R, Coletti A, Giacchè N, Manni I, et al. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res (2015) 75:4560-72. doi:10.1158/0008-5472.CAN-15-0439
-
(2015)
Cancer Res
, vol.75
, pp. 4560-4572
-
-
Pellegrino, M.1
Mancini, F.2
Lucà, R.3
Coletti, A.4
Giacchè, N.5
Manni, I.6
-
29
-
-
84874100498
-
Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway
-
Huang M, Zhang H, Liu T, Tian D, Gu L, Zhou M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther (2013) 12:184-94. doi:10.1158/1535-7163.MCT-12-0425
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 184-194
-
-
Huang, M.1
Zhang, H.2
Liu, T.3
Tian, D.4
Gu, L.5
Zhou, M.6
-
30
-
-
84946089195
-
Inhibiting NFAT1 for breast cancer therapy: new insights into the mechanism of action of MDM2 inhibitor JapA
-
Qin J-J, Wang W, Voruganti S, Wang H, Zhang W-D, Zhang R. Inhibiting NFAT1 for breast cancer therapy: new insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget (2015) 6:33106-19. doi:10.18632/oncotarget.5851
-
(2015)
Oncotarget
, vol.6
, pp. 33106-33119
-
-
Qin, J.-J.1
Wang, W.2
Voruganti, S.3
Wang, H.4
Zhang, W.-D.5
Zhang, R.6
-
31
-
-
78751533820
-
A small-molecule inhibitor of MDMX activates p53 and induces apoptosis
-
Wang H, Ma X, Ren S, Buolamwini JK, Yan C. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther (2011) 10:69-79. doi:10.1158/1535-7163.MCT-10-0581
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 69-79
-
-
Wang, H.1
Ma, X.2
Ren, S.3
Buolamwini, J.K.4
Yan, C.5
-
32
-
-
84944463644
-
Selective inhibition of histone deacetylase 2 induces p53-dependent survivin downregulation through MDM2 proteasomal degradation
-
Seo S-K, Hwang C-S, Choe T-B, Hong S-I, Yi JY, Hwang S-G, et al. Selective inhibition of histone deacetylase 2 induces p53-dependent survivin downregulation through MDM2 proteasomal degradation. Oncotarget (2015) 6:26528-40. doi:10.18632/oncotarget.3100
-
(2015)
Oncotarget
, vol.6
, pp. 26528-26540
-
-
Seo, S.-K.1
Hwang, C.-S.2
Choe, T.-B.3
Hong, S.-I.4
Yi, J.Y.5
Hwang, S.-G.6
-
33
-
-
84903379174
-
Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia
-
Zhang H, Gu L, Liu T, Chiang K-Y, Zhou M. Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS One (2014) 9:e100960. doi:10.1371/journal.pone.0100960
-
(2014)
PLoS One
, vol.9
-
-
Zhang, H.1
Gu, L.2
Liu, T.3
Chiang, K.-Y.4
Zhou, M.5
-
34
-
-
11144315535
-
Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors
-
Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LGGC, Masucci M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med (2004) 10:1321-8. doi:10.1038/nm1146
-
(2004)
Nat Med
, vol.10
, pp. 1321-1328
-
-
Issaeva, N.1
Bozko, P.2
Enge, M.3
Protopopova, M.4
Verhoef, L.G.G.C.5
Masucci, M.6
-
35
-
-
79959343390
-
Two-phase dynamics of p53 in the DNA damage response
-
Zhang X-P, Liu F, Wang W. Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci U S A (2011) 108:8990-5. doi:10.1073/pnas.1100600108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 8990-8995
-
-
Zhang, X.-P.1
Liu, F.2
Wang, W.3
-
36
-
-
84864930500
-
Transcriptional regulation of the p53 tumor suppressor gene in S-phase of the cell-cycle and the cellular response to DNA damage
-
Reisman D, Takahashi P, Polson A, Boggs K. Transcriptional regulation of the p53 tumor suppressor gene in S-phase of the cell-cycle and the cellular response to DNA damage. Biochem Res Int (2012) 2012:808934-5. doi:10.1155/2012/808934
-
(2012)
Biochem Res Int
, vol.2012
-
-
Reisman, D.1
Takahashi, P.2
Polson, A.3
Boggs, K.4
-
37
-
-
84958184651
-
The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes
-
Fischer M, Quaas M, Steiner L, Engeland K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res (2016) 44(1):164-74. doi:10.1093/nar/gkv927
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.1
, pp. 164-174
-
-
Fischer, M.1
Quaas, M.2
Steiner, L.3
Engeland, K.4
-
38
-
-
0034767429
-
Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1
-
Andreassen PR, Lohez OD, Lacroix FB, Margolis RL. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell (2001) 12:1315-28. doi:10.1091/mbc.12.5.1315
-
(2001)
Mol Biol Cell
, vol.12
, pp. 1315-1328
-
-
Andreassen, P.R.1
Lohez, O.D.2
Lacroix, F.B.3
Margolis, R.L.4
-
39
-
-
76349126361
-
Proliferation of aneuploid human cells is limited by a p53-dependent mechanism
-
Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol (2010) 188:369-81. doi:10.1083/jcb.200905057
-
(2010)
J Cell Biol
, vol.188
, pp. 369-381
-
-
Thompson, S.L.1
Compton, D.A.2
-
40
-
-
79960454735
-
The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo
-
Kuribayashi K, Finnberg N, Jeffers JR, Zambetti GP, El-Deiry WS. The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo. Cell Cycle (2011) 10:2380-9. doi:10.4161/cc.10.14.16588
-
(2011)
Cell Cycle
, vol.10
, pp. 2380-2389
-
-
Kuribayashi, K.1
Finnberg, N.2
Jeffers, J.R.3
Zambetti, G.P.4
El-Deiry, W.S.5
-
42
-
-
84874948475
-
A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis
-
Kracikova M, Akiri G, George A, Sachidanandam R, Aaronson SA. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ (2013) 20:576-88. doi:10.1038/cdd.2012.155
-
(2013)
Cell Death Differ
, vol.20
, pp. 576-588
-
-
Kracikova, M.1
Akiri, G.2
George, A.3
Sachidanandam, R.4
Aaronson, S.A.5
-
43
-
-
84895779578
-
Drugging the p53 pathway: understanding the route to clinical efficacy
-
Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov (2014) 13:217-36. doi:10.1038/nrd4236
-
(2014)
Nat Rev Drug Discov
, vol.13
, pp. 217-236
-
-
Khoo, K.H.1
Hoe, K.K.2
Verma, C.S.3
Lane, D.P.4
-
44
-
-
84876914265
-
MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models
-
Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res (2013) 73:2587-97. doi:10.1158/0008-5472.CAN-12-2807
-
(2013)
Cancer Res
, vol.73
, pp. 2587-2597
-
-
Tovar, C.1
Graves, B.2
Packman, K.3
Filipovic, Z.4
Higgins, B.5
Xia, M.6
-
45
-
-
84868203735
-
Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study
-
Ray-Coquard I, Blay J-Y, Italiano A, Le Cesne A, Penel N, Zhi J, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol (2012) 13:1133-40. doi:10.1016/S1470-2045(12)70474-6
-
(2012)
Lancet Oncol
, vol.13
, pp. 1133-1140
-
-
Ray-Coquard, I.1
Blay, J.-Y.2
Italiano, A.3
Le Cesne, A.4
Penel, N.5
Zhi, J.6
-
46
-
-
84962677007
-
-
Clin Cancer Res
-
AndreeffM, Kelly KR, Yee KW, Assouline SE, Strair R, Popplewell L, et al. Results of the phase 1 trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res (2015). doi:10.1158/1078-0432.CCR-15-0481
-
(2015)
Results of the phase 1 trial of RG7112, a small-molecule MDM2 antagonist in leukemia
-
-
Andreeff, M.1
Kelly, K.R.2
Yee, K.W.3
Assouline, S.E.4
Strair, R.5
Popplewell, L.6
-
47
-
-
84863045363
-
Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration
-
Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi M-Y, Chapman CG, et al. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis (2012) 33:442-51. doi:10.1093/carcin/bgr270
-
(2012)
Carcinogenesis
, vol.33
, pp. 442-451
-
-
Yeudall, W.A.1
Vaughan, C.A.2
Miyazaki, H.3
Ramamoorthy, M.4
Choi, M.-Y.5
Chapman, C.G.6
-
48
-
-
0029742781
-
Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function
-
Ludwig RL, Bates S, Vousden KH. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol (1996) 16:4952-60. doi:10.1128/MCB.16.9.4952
-
(1996)
Mol Cell Biol
, vol.16
, pp. 4952-4960
-
-
Ludwig, R.L.1
Bates, S.2
Vousden, K.H.3
-
49
-
-
84880298880
-
Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis
-
Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene (2013) 32:3286-95. doi:10.1038/onc.2012.334
-
(2013)
Oncogene
, vol.32
, pp. 3286-3295
-
-
Dong, P.1
Karaayvaz, M.2
Jia, N.3
Kaneuchi, M.4
Hamada, J.5
Watari, H.6
-
50
-
-
84903627732
-
Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation
-
Zhou G, Wang J, Zhao M, Xie T-X, Tanaka N, Sano D, et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell (2014) 54:960-74. doi:10.1016/j.molcel.2014.04.024
-
(2014)
Mol Cell
, vol.54
, pp. 960-974
-
-
Zhou, G.1
Wang, J.2
Zhao, M.3
Xie, T.-X.4
Tanaka, N.5
Sano, D.6
-
51
-
-
84941220446
-
Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth
-
Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature (2015) 525:206-11. doi:10.1038/nature15251
-
(2015)
Nature
, vol.525
, pp. 206-211
-
-
Zhu, J.1
Sammons, M.A.2
Donahue, G.3
Dou, Z.4
Vedadi, M.5
Getlik, M.6
-
52
-
-
84908632308
-
Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine
-
Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta (2015) 1853:89-100. doi:10.1016/j.bbamcr.2014.10.003
-
(2015)
Biochim Biophys Acta
, vol.1853
, pp. 89-100
-
-
Fiorini, C.1
Cordani, M.2
Padroni, C.3
Blandino, G.4
Di Agostino, S.5
Donadelli, M.6
-
53
-
-
84873661372
-
Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9
-
Chee JLY, Saidin S, Lane DP, Leong SM, Noll JE, Neilsen PM, et al. Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9. Cell Cycle (2013) 12:278-88. doi:10.4161/cc.23054
-
(2013)
Cell Cycle
, vol.12
, pp. 278-288
-
-
Chee, J.L.Y.1
Saidin, S.2
Lane, D.P.3
Leong, S.M.4
Noll, J.E.5
Neilsen, P.M.6
-
54
-
-
84942891969
-
Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53
-
Zhang S, Zhou L, Hong B, Van Den Heuvel APJ, Prabhu VV, Warfel NA, et al. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53. Cancer Res (2015) 75:3842-52. doi:10.1158/0008-5472.CAN-13-1079
-
(2015)
Cancer Res
, vol.75
, pp. 3842-3852
-
-
Zhang, S.1
Zhou, L.2
Hong, B.3
Van Den Heuvel, A.P.J.4
Prabhu, V.V.5
Warfel, N.A.6
-
55
-
-
84880309607
-
Not all p53 gain-of-function mutants are created equal
-
Mello SS, Attardi LD. Not all p53 gain-of-function mutants are created equal. Cell Death Differ (2013) 20:855-7. doi:10.1038/cdd.2013.53
-
(2013)
Cell Death Differ
, vol.20
, pp. 855-857
-
-
Mello, S.S.1
Attardi, L.D.2
-
56
-
-
81255185485
-
Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3
-
Aziz MH, Shen H, Maki CG. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene (2011) 30:4678-86. doi:10.1038/onc.2011.185
-
(2011)
Oncogene
, vol.30
, pp. 4678-4686
-
-
Aziz, M.H.1
Shen, H.2
Maki, C.G.3
-
57
-
-
33644778697
-
Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo
-
Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A (2006) 103:3232-7. doi:10.1073/pnas.0508476103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 3232-3237
-
-
Francoz, S.1
Froment, P.2
Bogaerts, S.3
De Clercq, S.4
Maetens, M.5
Doumont, G.6
-
58
-
-
84873055344
-
MDM2, MDMX and p53 in oncogenesis and cancer therapy
-
Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer (2013) 13:83-96. doi:10.1038/nrc3430
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 83-96
-
-
Wade, M.1
Li, Y.-C.2
Wahl, G.M.3
-
59
-
-
84890435387
-
p53-based cyclotherapy: exploiting the "guardian of the genome" to protect normal cells from cytotoxic therapy
-
Rao B, Lain S, Thompson AM. p53-based cyclotherapy: exploiting the "guardian of the genome" to protect normal cells from cytotoxic therapy. Br J Cancer (2013) 109:2954-8. doi:10.1038/bjc.2013.702
-
(2013)
Br J Cancer
, vol.109
, pp. 2954-2958
-
-
Rao, B.1
Lain, S.2
Thompson, A.M.3
-
60
-
-
84942411527
-
Pharmacologically increasing Mdm2 inhibits DNA repair and cooperates with genotoxic agents to kill p53-inactivated ovarian cancer cells
-
Carrillo AM, Hicks M, Khabele D, Eischen CM. Pharmacologically increasing Mdm2 inhibits DNA repair and cooperates with genotoxic agents to kill p53-inactivated ovarian cancer cells. Mol Cancer Res (2015) 13:1197-205. doi:10.1158/1541-7786.MCR-15-0089
-
(2015)
Mol Cancer Res
, vol.13
, pp. 1197-1205
-
-
Carrillo, A.M.1
Hicks, M.2
Khabele, D.3
Eischen, C.M.4
-
61
-
-
84868129083
-
Estrogen receptor prevents p53-dependent apoptosis in breast cancer
-
Bailey ST, Shin H, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci U S A (2012) 109:18060-5. doi:10.1073/pnas.1018858109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 18060-18065
-
-
Bailey, S.T.1
Shin, H.2
Westerling, T.3
Liu, X.S.4
Brown, M.5
-
62
-
-
84930621854
-
A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097
-
Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, et al. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. Elife (2015) 4:12985. doi:10.7554/eLife.06498
-
(2015)
Elife
, vol.4
, pp. 12985
-
-
Jeay, S.1
Gaulis, S.2
Ferretti, S.3
Bitter, H.4
Ito, M.5
Valat, T.6
-
63
-
-
84955287463
-
Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors
-
Sonkin D. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors. Elife (2015) 4:e10279. doi:10.7554/eLife.10279
-
(2015)
Elife
, vol.4
-
-
Sonkin, D.1
-
64
-
-
84928381620
-
Identifying the determinants of response to MDM2 inhibition
-
Saiki AY, Caenepeel S, Cosgrove E, Su C, Boedigheimer M, Oliner JD. Identifying the determinants of response to MDM2 inhibition. Oncotarget (2015) 6:7701-12. doi:10.18632/oncotarget.3116
-
(2015)
Oncotarget
, vol.6
, pp. 7701-7712
-
-
Saiki, A.Y.1
Caenepeel, S.2
Cosgrove, E.3
Su, C.4
Boedigheimer, M.5
Oliner, J.D.6
|