메뉴 건너뛰기




Volumn 26, Issue 3, 2016, Pages 177-189

Caveolae: One Function or Many?

Author keywords

Caveolae; Caveolin; Cavin; Endocytosis; Mechanoprotection; Transcytosis

Indexed keywords

CARDIOMYOPATHY; CAVEOLA; CELL FUNCTION; DIET INDUCED OBESITY; ENDOCYTOSIS; FIBROSING ALVEOLITIS; FLUORESCENCE RESONANCE ENERGY TRANSFER; GENE MUTATION; GLUCOSE INTOLERANCE; HEART ARRHYTHMIA; HEART VENTRICLE HYPERTROPHY; HUMAN; HYPERTRIGLYCERIDEMIA; IN VITRO STUDY; IN VIVO STUDY; INSULIN RESISTANCE; LIPID HOMEOSTASIS; LIPODYSTROPHY; LUNG ALVEOLUS WALL; MUSCLE HYPERTROPHY; MUSCULAR DYSTROPHY; MYOPATHY; NONHUMAN; PHENOTYPE; PRIORITY JOURNAL; PULMONARY HYPERTENSION; REVIEW; SIGNAL TRANSDUCTION; TRANSCYTOSIS; ANIMAL; LIPID METABOLISM; PHYSIOLOGY; PROTEIN TRANSPORT;

EID: 84958106156     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.10.010     Document Type: Review
Times cited : (191)

References (162)
  • 1
    • 0000855817 scopus 로고
    • Fine structure of blood capillaries
    • Palade G.E. Fine structure of blood capillaries. J. Appl. Phys. 1953, 24:1424.
    • (1953) J. Appl. Phys. , vol.24 , pp. 1424
    • Palade, G.E.1
  • 2
    • 0026559095 scopus 로고
    • Caveolin, a protein component of caveolae membrane coats
    • Rothberg K.G., et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992, 68:673-682.
    • (1992) Cell , vol.68 , pp. 673-682
    • Rothberg, K.G.1
  • 3
    • 84928689429 scopus 로고    scopus 로고
    • Cavin family proteins and the assembly of caveolae
    • Kovtun O., et al. Cavin family proteins and the assembly of caveolae. J. Cell Sci. 2015, 128:1269-1278.
    • (2015) J. Cell Sci. , vol.128 , pp. 1269-1278
    • Kovtun, O.1
  • 4
    • 84921310508 scopus 로고    scopus 로고
    • Structural insights into the organization of the cavin membrane coat complex
    • Kovtun O., et al. Structural insights into the organization of the cavin membrane coat complex. Dev. Cell 2014, 31:405-419.
    • (2014) Dev. Cell , vol.31 , pp. 405-419
    • Kovtun, O.1
  • 5
    • 0030561979 scopus 로고    scopus 로고
    • M-caveolin, a muscle-specific caveolin-related protein
    • Way M., Parton R.G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 1996, 378:108-112.
    • (1996) FEBS Lett. , vol.378 , pp. 108-112
    • Way, M.1    Parton, R.G.2
  • 6
    • 0030060941 scopus 로고    scopus 로고
    • Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle
    • Tang Z., et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 1996, 271:2255-2261.
    • (1996) J. Biol. Chem. , vol.271 , pp. 2255-2261
    • Tang, Z.1
  • 7
    • 0030034772 scopus 로고    scopus 로고
    • Identification, sequence, and expression of caveolin-defines a caveolin gene family
    • Scherer P.E., et al. Identification, sequence, and expression of caveolin-defines a caveolin gene family. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:131-135.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 131-135
    • Scherer, P.E.1
  • 8
    • 53049091996 scopus 로고    scopus 로고
    • Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance
    • Liu L., et al. Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008, 8:310-317.
    • (2008) Cell Metab. , vol.8 , pp. 310-317
    • Liu, L.1
  • 9
    • 37649011760 scopus 로고    scopus 로고
    • PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function
    • Hill M.M., et al. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008, 132:113-124.
    • (2008) Cell , vol.132 , pp. 113-124
    • Hill, M.M.1
  • 10
    • 27844585191 scopus 로고    scopus 로고
    • Identification of a major protein on the cytosolic face of caveolae
    • Vinten J., et al. Identification of a major protein on the cytosolic face of caveolae. Biochim. Biophys. Acta 2005, 1717:34-40.
    • (2005) Biochim. Biophys. Acta , vol.1717 , pp. 34-40
    • Vinten, J.1
  • 11
    • 7444221690 scopus 로고    scopus 로고
    • Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes
    • Aboulaich N., et al. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 2004, 383:237-248.
    • (2004) Biochem. J. , vol.383 , pp. 237-248
    • Aboulaich, N.1
  • 12
    • 0034914313 scopus 로고    scopus 로고
    • A 60-kDa protein abundant in adipocyte caveolae
    • Vinten J., et al. A 60-kDa protein abundant in adipocyte caveolae. Cell Tissue Res. 2001, 305:99-106.
    • (2001) Cell Tissue Res. , vol.305 , pp. 99-106
    • Vinten, J.1
  • 13
    • 67649583182 scopus 로고    scopus 로고
    • MURC/cavin-and cavin family members form tissue-specific caveolar complexes
    • Bastiani M., et al. MURC/cavin-and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 2009, 185:1259-1273.
    • (2009) J. Cell Biol. , vol.185 , pp. 1259-1273
    • Bastiani, M.1
  • 14
    • 67349244346 scopus 로고    scopus 로고
    • SRBC/cavin-is a caveolin adapter protein that regulates caveolae function
    • McMahon K.A., et al. SRBC/cavin-is a caveolin adapter protein that regulates caveolae function. EMBO J. 2009, 28:1001-1015.
    • (2009) EMBO J. , vol.28 , pp. 1001-1015
    • McMahon, K.A.1
  • 15
    • 69449096573 scopus 로고    scopus 로고
    • Molecular mechanisms of clathrin-independent endocytosis
    • Hansen C.G., Nichols B.J. Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 2009, 122:1713-1721.
    • (2009) J. Cell Sci. , vol.122 , pp. 1713-1721
    • Hansen, C.G.1    Nichols, B.J.2
  • 16
    • 77958009227 scopus 로고    scopus 로고
    • Quantitative proteomics of caveolin-1-regulated proteins: characterization of polymerase I and transcript release factor/cavin-in endothelial cells
    • Davalos A., et al. Quantitative proteomics of caveolin-1-regulated proteins: characterization of polymerase I and transcript release factor/cavin-in endothelial cells. Mol. Cell. Proteomics 2010, 9:2109-2124.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 2109-2124
    • Davalos, A.1
  • 17
    • 77949557277 scopus 로고    scopus 로고
    • Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes
    • Hayer A., et al. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 2009, 11:361-382.
    • (2009) Traffic , vol.11 , pp. 361-382
    • Hayer, A.1
  • 18
    • 42949174820 scopus 로고    scopus 로고
    • A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization
    • Liu L., Pilch P.F. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J. Biol. Chem. 2008, 283:4314-4322.
    • (2008) J. Biol. Chem. , vol.283 , pp. 4314-4322
    • Liu, L.1    Pilch, P.F.2
  • 19
    • 84883200920 scopus 로고    scopus 로고
    • Molecular composition and ultrastructure of the caveolar coat complex
    • Ludwig A., et al. Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol. 2013, 11:e1001640.
    • (2013) PLoS Biol. , vol.11
    • Ludwig, A.1
  • 20
    • 84898722791 scopus 로고    scopus 로고
    • Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae
    • Gambin Y., et al. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. Elife 2013, 3:e01434.
    • (2013) Elife , vol.3
    • Gambin, Y.1
  • 21
    • 0037143769 scopus 로고    scopus 로고
    • Defects in caveolin-cause dilated cardiomyopathy and pulmonary hypertension in knockout mice
    • Zhao Y.Y., et al. Defects in caveolin-cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:11375-11380.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 11375-11380
    • Zhao, Y.Y.1
  • 22
    • 0035851197 scopus 로고    scopus 로고
    • Caveolin-null mice are viable but show evidence of hyperproliferative and vascular abnormalities
    • Razani B., et al. Caveolin-null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 2001, 276:38121-38138.
    • (2001) J. Biol. Chem. , vol.276 , pp. 38121-38138
    • Razani, B.1
  • 23
    • 0035964954 scopus 로고    scopus 로고
    • Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-gene-disrupted mice
    • Drab M., et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-gene-disrupted mice. Science 2001, 293:2449-2452.
    • (2001) Science , vol.293 , pp. 2449-2452
    • Drab, M.1
  • 24
    • 0242268532 scopus 로고    scopus 로고
    • Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms
    • Parton R.G., Richards A.A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 2003, 4:724-738.
    • (2003) Traffic , vol.4 , pp. 724-738
    • Parton, R.G.1    Richards, A.A.2
  • 25
    • 0345706824 scopus 로고    scopus 로고
    • Caveosomes and endocytosis of lipid rafts
    • Nichols B. Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 2003, 116:4707-4714.
    • (2003) J. Cell Sci. , vol.116 , pp. 4707-4714
    • Nichols, B.1
  • 26
    • 0036239115 scopus 로고    scopus 로고
    • Endocytosis via caveolae
    • Pelkmans L., Helenius A. Endocytosis via caveolae. Traffic 2002, 3:311-320.
    • (2002) Traffic , vol.3 , pp. 311-320
    • Pelkmans, L.1    Helenius, A.2
  • 27
    • 84924871461 scopus 로고    scopus 로고
    • Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae
    • Mohan J., et al. Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J. Cell Sci. 2015, 128:979-991.
    • (2015) J. Cell Sci. , vol.128 , pp. 979-991
    • Mohan, J.1
  • 28
    • 84904582330 scopus 로고    scopus 로고
    • Cavin-knockout mice show that cavin-is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance
    • Liu L., et al. Cavin-knockout mice show that cavin-is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS ONE 2014, 9:e102935.
    • (2014) PLoS ONE , vol.9
    • Liu, L.1
  • 29
    • 79961145704 scopus 로고    scopus 로고
    • Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis
    • Hansen C.G., et al. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci. 2011, 124:2777-2785.
    • (2011) J. Cell Sci. , vol.124 , pp. 2777-2785
    • Hansen, C.G.1
  • 30
    • 84867397589 scopus 로고    scopus 로고
    • Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae
    • Koch D., et al. Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem. Cell Biol. 2012, 138:215-230.
    • (2012) Histochem. Cell Biol. , vol.138 , pp. 215-230
    • Koch, D.1
  • 31
    • 16244399830 scopus 로고    scopus 로고
    • Caveolin-interacts directly with dynamin-2
    • Yao Q., et al. Caveolin-interacts directly with dynamin-2. J. Mol. Biol. 2005, 348:491-501.
    • (2005) J. Mol. Biol. , vol.348 , pp. 491-501
    • Yao, Q.1
  • 32
    • 0032489880 scopus 로고    scopus 로고
    • Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium
    • Oh P., et al. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 1998, 141:101-114.
    • (1998) J. Cell Biol. , vol.141 , pp. 101-114
    • Oh, P.1
  • 33
    • 0032489879 scopus 로고    scopus 로고
    • Dynamin-mediated internalization of caveolae
    • Henley J.R., et al. Dynamin-mediated internalization of caveolae. J. Cell Biol. 1998, 141:85-99.
    • (1998) J. Cell Biol. , vol.141 , pp. 85-99
    • Henley, J.R.1
  • 34
    • 84861183378 scopus 로고    scopus 로고
    • Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin
    • Stoeber M., et al. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J. 2012, 31:2350-2364.
    • (2012) EMBO J. , vol.31 , pp. 2350-2364
    • Stoeber, M.1
  • 35
    • 84859396266 scopus 로고    scopus 로고
    • EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization
    • Moren B., et al. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 2012, 23:1316-1329.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1316-1329
    • Moren, B.1
  • 36
    • 84910123062 scopus 로고    scopus 로고
    • Direct interaction of actin filaments with F-BAR protein pacsin2
    • Kostan J., et al. Direct interaction of actin filaments with F-BAR protein pacsin2. EMBO Rep. 2014, 15:1154-1162.
    • (2014) EMBO Rep. , vol.15 , pp. 1154-1162
    • Kostan, J.1
  • 37
    • 79958105143 scopus 로고    scopus 로고
    • Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting
    • Senju Y., et al. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J. Cell Sci. 2011, 124:2032-2040.
    • (2011) J. Cell Sci. , vol.124 , pp. 2032-2040
    • Senju, Y.1
  • 38
    • 0028057494 scopus 로고
    • Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae
    • Parton R.G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 1994, 42:155-166.
    • (1994) J. Histochem. Cytochem. , vol.42 , pp. 155-166
    • Parton, R.G.1
  • 39
    • 0035972147 scopus 로고    scopus 로고
    • Rapid cycling of lipid raft markers between the cell surface and Golgi complex
    • Nichols B.J., et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 2001, 153:529-541.
    • (2001) J. Cell Biol. , vol.153 , pp. 529-541
    • Nichols, B.J.1
  • 40
    • 0031750101 scopus 로고    scopus 로고
    • Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains
    • Orlandi P.A., Fishman P.H. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol. 1998, 141:905-915.
    • (1998) J. Cell Biol. , vol.141 , pp. 905-915
    • Orlandi, P.A.1    Fishman, P.H.2
  • 41
    • 0035017308 scopus 로고    scopus 로고
    • Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER
    • Pelkmans L., et al. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 2001, 3:473-483.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 473-483
    • Pelkmans, L.1
  • 42
    • 78049508213 scopus 로고    scopus 로고
    • Caveolin-is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation
    • Hayer A., et al. Caveolin-is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J. Cell Biol. 2010, 191:615-629.
    • (2010) J. Cell Biol. , vol.191 , pp. 615-629
    • Hayer, A.1
  • 43
    • 79955436301 scopus 로고    scopus 로고
    • Role of endosomes in simian virus 40 entry and infection
    • Engel S., et al. Role of endosomes in simian virus 40 entry and infection. J. Virol. 2011, 85:4198-4211.
    • (2011) J. Virol. , vol.85 , pp. 4198-4211
    • Engel, S.1
  • 44
    • 78049499223 scopus 로고    scopus 로고
    • Revisiting caveolin trafficking: the end of the caveosome
    • Parton R.G., Howes M.T. Revisiting caveolin trafficking: the end of the caveosome. J. Cell Biol. 2010, 191:439-441.
    • (2010) J. Cell Biol. , vol.191 , pp. 439-441
    • Parton, R.G.1    Howes, M.T.2
  • 45
    • 0034762332 scopus 로고    scopus 로고
    • Internalization of cholera toxin by different endocytic mechanisms
    • Torgersen M.L., et al. Internalization of cholera toxin by different endocytic mechanisms. J. Cell Sci. 2001, 114:3737-3747.
    • (2001) J. Cell Sci. , vol.114 , pp. 3737-3747
    • Torgersen, M.L.1
  • 46
    • 0036094927 scopus 로고    scopus 로고
    • A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex
    • Nichols B.J. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nat. Cell Biol. 2002, 4:374-378.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 374-378
    • Nichols, B.J.1
  • 47
    • 12344253816 scopus 로고    scopus 로고
    • Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism
    • Hansen G.H., et al. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism. Biochemistry 2005, 44:873-882.
    • (2005) Biochemistry , vol.44 , pp. 873-882
    • Hansen, G.H.1
  • 48
    • 13444273098 scopus 로고    scopus 로고
    • Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae
    • Damm E.M., et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 2005, 168:477-488.
    • (2005) J. Cell Biol. , vol.168 , pp. 477-488
    • Damm, E.M.1
  • 49
    • 27244450483 scopus 로고    scopus 로고
    • Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes
    • Ewers H., et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:15110-15115.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 15110-15115
    • Ewers, H.1
  • 50
    • 36749032244 scopus 로고    scopus 로고
    • Shiga toxin induces tubular membrane invaginations for its uptake into cells
    • Romer W., et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007, 450:670-675.
    • (2007) Nature , vol.450 , pp. 670-675
    • Romer, W.1
  • 51
    • 84928383355 scopus 로고    scopus 로고
    • Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids
    • Shvets E., et al. Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat. Commun. 2015, 6:6867.
    • (2015) Nat. Commun. , vol.6 , pp. 6867
    • Shvets, E.1
  • 52
    • 13444310587 scopus 로고    scopus 로고
    • Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles
    • Kirkham M., et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol. 2005, 168:465-476.
    • (2005) J. Cell Biol. , vol.168 , pp. 465-476
    • Kirkham, M.1
  • 53
    • 0036151510 scopus 로고    scopus 로고
    • Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking
    • Thomsen P., et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 2002, 13:238-250.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 238-250
    • Thomsen, P.1
  • 54
    • 84964312390 scopus 로고    scopus 로고
    • Clathrin-independent pathways do not contribute significantly to endocytic flux
    • Bitsikas V., et al. Clathrin-independent pathways do not contribute significantly to endocytic flux. Elife 2014, 3:e03970.
    • (2014) Elife , vol.3
    • Bitsikas, V.1
  • 55
    • 42449126309 scopus 로고    scopus 로고
    • Fatty acid transport in adipocytes and the development of insulin resistance
    • discussion 121-126, 162-163, 196-203
    • Lobo S., Bernlohr D.A. Fatty acid transport in adipocytes and the development of insulin resistance. Novartis Found. Symp. 2007, 286:113-121. discussion 121-126, 162-163, 196-203.
    • (2007) Novartis Found. Symp. , vol.286 , pp. 113-121
    • Lobo, S.1    Bernlohr, D.A.2
  • 56
    • 33646835213 scopus 로고    scopus 로고
    • Caveolin-is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts
    • Ring A., et al. Caveolin-is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta 2006, 1761:416-423.
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 416-423
    • Ring, A.1
  • 57
    • 33644675358 scopus 로고    scopus 로고
    • Role of caveolin-and cholesterol in transmembrane fatty acid movement
    • Meshulam T., et al. Role of caveolin-and cholesterol in transmembrane fatty acid movement. Biochemistry 2006, 45:2882-2893.
    • (2006) Biochemistry , vol.45 , pp. 2882-2893
    • Meshulam, T.1
  • 58
    • 0037705362 scopus 로고    scopus 로고
    • Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling
    • Souto R.P., et al. Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. J. Biol. Chem. 2003, 278:18321-18329.
    • (2003) J. Biol. Chem. , vol.278 , pp. 18321-18329
    • Souto, R.P.1
  • 59
    • 84884594963 scopus 로고    scopus 로고
    • RAB8B is required for activity and caveolar endocytosis of LRP6
    • Demir K., et al. RAB8B is required for activity and caveolar endocytosis of LRP6. Cell Rep. 2013, 4:1224-1234.
    • (2013) Cell Rep. , vol.4 , pp. 1224-1234
    • Demir, K.1
  • 60
    • 46049089076 scopus 로고    scopus 로고
    • Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of β-catenin signaling
    • Yamamoto H., et al. Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of β-catenin signaling. Dev. Cell 2008, 15:37-48.
    • (2008) Dev. Cell , vol.15 , pp. 37-48
    • Yamamoto, H.1
  • 61
    • 34548150618 scopus 로고    scopus 로고
    • Regulation of raft-dependent endocytosis
    • Lajoie P., Nabi I.R. Regulation of raft-dependent endocytosis. J. Cell. Mol. Med. 2007, 11:644-653.
    • (2007) J. Cell. Mol. Med. , vol.11 , pp. 644-653
    • Lajoie, P.1    Nabi, I.R.2
  • 62
    • 0036479204 scopus 로고    scopus 로고
    • Caveolin-is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum
    • Le P.U., et al. Caveolin-is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 2002, 277:3371-3379.
    • (2002) J. Biol. Chem. , vol.277 , pp. 3371-3379
    • Le, P.U.1
  • 63
    • 84900415360 scopus 로고    scopus 로고
    • Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis
    • Chaudhary N., et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol. 2014, 12:e1001832.
    • (2014) PLoS Biol. , vol.12
    • Chaudhary, N.1
  • 64
    • 0020963907 scopus 로고
    • Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ
    • Vasile E., et al. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol. 1983, 96:1677-1689.
    • (1983) J. Cell Biol. , vol.96 , pp. 1677-1689
    • Vasile, E.1
  • 65
    • 0023026241 scopus 로고
    • Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium
    • Nistor A., Simionescu M. Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium. Am. Rev. Respir. Dis. 1986, 134:1266-1272.
    • (1986) Am. Rev. Respir. Dis. , vol.134 , pp. 1266-1272
    • Nistor, A.1    Simionescu, M.2
  • 66
    • 0022551377 scopus 로고
    • Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis
    • Ghitescu L., et al. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 1986, 102:1304-1311.
    • (1986) J. Cell Biol. , vol.102 , pp. 1304-1311
    • Ghitescu, L.1
  • 67
    • 0029950908 scopus 로고    scopus 로고
    • Transport of insulin and albumin by the microvascular endothelium of the rete mirabile
    • Bendayan M., Rasio E.A. Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J. Cell Sci. 1996, 109:1857-1864.
    • (1996) J. Cell Sci. , vol.109 , pp. 1857-1864
    • Bendayan, M.1    Rasio, E.A.2
  • 68
    • 0023605609 scopus 로고
    • Transcytosis of albumin in capillary endothelium
    • Milici A.J., et al. Transcytosis of albumin in capillary endothelium. J. Cell Biol. 1987, 105:2603-2612.
    • (1987) J. Cell Biol. , vol.105 , pp. 2603-2612
    • Milici, A.J.1
  • 69
    • 0022364832 scopus 로고
    • Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure
    • Peters K.R., et al. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol. 1985, 101:2233-2238.
    • (1985) J. Cell Biol. , vol.101 , pp. 2233-2238
    • Peters, K.R.1
  • 70
    • 0035450528 scopus 로고    scopus 로고
    • Caveolar and intercellular channels provide major transport pathways of macromolecules across vascular endothelial cells
    • Ogawa K., et al. Caveolar and intercellular channels provide major transport pathways of macromolecules across vascular endothelial cells. Anat. Rec. 2001, 264:32-42.
    • (2001) Anat. Rec. , vol.264 , pp. 32-42
    • Ogawa, K.1
  • 71
    • 33748426207 scopus 로고    scopus 로고
    • Transvascular protein transport in mice lacking endothelial caveolae
    • Rosengren B.I., et al. Transvascular protein transport in mice lacking endothelial caveolae. Am. J. Physiol. Heart Circ. Physiol. 2006, 291:H1371-H1377.
    • (2006) Am. J. Physiol. Heart Circ. Physiol. , vol.291 , pp. H1371-H1377
    • Rosengren, B.I.1
  • 72
    • 0036386857 scopus 로고    scopus 로고
    • Transendothelial transport: the vesicle controversy
    • Rippe B., et al. Transendothelial transport: the vesicle controversy. J. Vasc. Res. 2002, 39:375-390.
    • (2002) J. Vasc. Res. , vol.39 , pp. 375-390
    • Rippe, B.1
  • 73
    • 0037131313 scopus 로고    scopus 로고
    • -/- knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-null mice
    • -/- knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-null mice. J. Biol. Chem. 2002, 277:40091-40098.
    • (2002) J. Biol. Chem. , vol.277 , pp. 40091-40098
    • Schubert, W.1
  • 74
    • 84878592690 scopus 로고    scopus 로고
    • Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae
    • Hansen C.G., et al. Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat. Commun. 2013, 4:1831.
    • (2013) Nat. Commun. , vol.4 , pp. 1831
    • Hansen, C.G.1
  • 75
    • 84908332621 scopus 로고    scopus 로고
    • In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors
    • Oh P., et al. In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat. Med. 2014, 20:1062-1068.
    • (2014) Nat. Med. , vol.20 , pp. 1062-1068
    • Oh, P.1
  • 76
    • 33947146207 scopus 로고    scopus 로고
    • Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung
    • Oh P., et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat. Biotechnol. 2007, 25:327-337.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 327-337
    • Oh, P.1
  • 77
    • 73549100017 scopus 로고    scopus 로고
    • Vascular permeability and pathological angiogenesis in caveolin-1-null mice
    • Chang S.H., et al. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am. J. Pathol. 2009, 175:1768-1776.
    • (2009) Am. J. Pathol. , vol.175 , pp. 1768-1776
    • Chang, S.H.1
  • 78
    • 0026459937 scopus 로고
    • Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels
    • Kohn S., et al. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab. Invest. 1992, 67:596-607.
    • (1992) Lab. Invest. , vol.67 , pp. 596-607
    • Kohn, S.1
  • 79
    • 0030045180 scopus 로고    scopus 로고
    • The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation
    • Dvorak A.M., et al. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 1996, 59:100-115.
    • (1996) J. Leukoc. Biol. , vol.59 , pp. 100-115
    • Dvorak, A.M.1
  • 80
    • 0035074497 scopus 로고    scopus 로고
    • The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle
    • Dvorak A.M., Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 2001, 49:419-432.
    • (2001) J. Histochem. Cytochem. , vol.49 , pp. 419-432
    • Dvorak, A.M.1    Feng, D.2
  • 81
    • 41549146084 scopus 로고    scopus 로고
    • Association of a homozygous nonsense caveolin-mutation with Berardinelli-Seip congenital lipodystrophy
    • Kim C.A., et al. Association of a homozygous nonsense caveolin-mutation with Berardinelli-Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 2008, 93:1129-1134.
    • (2008) J. Clin. Endocrinol. Metab. , vol.93 , pp. 1129-1134
    • Kim, C.A.1
  • 82
    • 79960680874 scopus 로고    scopus 로고
    • Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes
    • Pilch P.F., Liu L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol. Metab. 2011, 22:318-324.
    • (2011) Trends Endocrinol. Metab. , vol.22 , pp. 318-324
    • Pilch, P.F.1    Liu, L.2
  • 83
    • 77950431859 scopus 로고    scopus 로고
    • Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations
    • Rajab A., et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010, 6:e1000874.
    • (2010) PLoS Genet. , vol.6
    • Rajab, A.1
  • 84
    • 84895770533 scopus 로고    scopus 로고
    • Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling
    • Ariotti N., et al. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J. Cell Biol. 2014, 204:777-792.
    • (2014) J. Cell Biol. , vol.204 , pp. 777-792
    • Ariotti, N.1
  • 85
    • 0037455589 scopus 로고    scopus 로고
    • Direct visualization of Ras proteins in spatially distinct cell surface microdomains
    • Prior I.A., et al. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 2003, 160:165-170.
    • (2003) J. Cell Biol. , vol.160 , pp. 165-170
    • Prior, I.A.1
  • 86
    • 29144505268 scopus 로고    scopus 로고
    • Getting rid of caveolins: phenotypes of caveolin-deficient animals
    • Le Lay S., Kurzchalia T.V. Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim. Biophys. Acta 2005, 1746:322-333.
    • (2005) Biochim. Biophys. Acta , vol.1746 , pp. 322-333
    • Le Lay, S.1    Kurzchalia, T.V.2
  • 87
    • 47649113551 scopus 로고    scopus 로고
    • Evolutionary analysis and molecular dissection of caveola biogenesis
    • Kirkham M., et al. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci. 2008, 121:2075-2086.
    • (2008) J. Cell Sci. , vol.121 , pp. 2075-2086
    • Kirkham, M.1
  • 88
    • 65249110451 scopus 로고    scopus 로고
    • Caveolin-is required for apical lipid trafficking and suppresses basolateral recycling defects in the intestine of Caenorhabditis elegans
    • Parker S., et al. Caveolin-is required for apical lipid trafficking and suppresses basolateral recycling defects in the intestine of Caenorhabditis elegans. Mol. Biol. Cell 2009, 20:1763-1771.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1763-1771
    • Parker, S.1
  • 89
    • 84878472293 scopus 로고    scopus 로고
    • Intestinal caveolin-is important for dietary fatty acid absorption
    • Siddiqi S., et al. Intestinal caveolin-is important for dietary fatty acid absorption. Biochim. Biophys. Acta 2013, 1831:1311-1321.
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 1311-1321
    • Siddiqi, S.1
  • 90
    • 84863296897 scopus 로고    scopus 로고
    • Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content
    • Mundy D.I., et al. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Mol. Biol. Cell 2012, 23:864-880.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 864-880
    • Mundy, D.I.1
  • 91
    • 33746482870 scopus 로고    scopus 로고
    • Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin
    • Yamamoto H., et al. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev. Cell 2006, 11:213-223.
    • (2006) Dev. Cell , vol.11 , pp. 213-223
    • Yamamoto, H.1
  • 92
    • 26844557817 scopus 로고    scopus 로고
    • Insulin and IGF-phosphorylate eNOS in HUVECs by a caveolin-dependent mechanism
    • Repetto S., et al. Insulin and IGF-phosphorylate eNOS in HUVECs by a caveolin-dependent mechanism. Biochem. Biophys. Res. Commun. 2005, 337:849-852.
    • (2005) Biochem. Biophys. Res. Commun. , vol.337 , pp. 849-852
    • Repetto, S.1
  • 93
    • 0242268533 scopus 로고    scopus 로고
    • Insulin signaling in microdomains of the plasma membrane
    • Saltiel A.R., Pessin J.E. Insulin signaling in microdomains of the plasma membrane. Traffic 2003, 4:711-716.
    • (2003) Traffic , vol.4 , pp. 711-716
    • Saltiel, A.R.1    Pessin, J.E.2
  • 94
    • 0344420042 scopus 로고    scopus 로고
    • Protein kinase Cγ regulation of gap junction activity through caveolin-1-containing lipid rafts
    • Lin D., et al. Protein kinase Cγ regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest. Ophthalmol. Vis. Sci. 2003, 44:5259-5268.
    • (2003) Invest. Ophthalmol. Vis. Sci. , vol.44 , pp. 5259-5268
    • Lin, D.1
  • 95
    • 0036484936 scopus 로고    scopus 로고
    • Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes
    • Karlsson M., et al. Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J. 2002, 16:249-251.
    • (2002) FASEB J. , vol.16 , pp. 249-251
    • Karlsson, M.1
  • 96
    • 0033306884 scopus 로고    scopus 로고
    • Caveolin-interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-cells and rat adipose cells
    • Nystrom F.H., et al. Caveolin-interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-cells and rat adipose cells. Mol. Endocrinol. 1999, 13:2013-2024.
    • (1999) Mol. Endocrinol. , vol.13 , pp. 2013-2024
    • Nystrom, F.H.1
  • 97
    • 0032745869 scopus 로고    scopus 로고
    • Localization of the insulin receptor in caveolae of adipocyte plasma membrane
    • Gustavsson J., et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 1999, 13:1961-1971.
    • (1999) FASEB J. , vol.13 , pp. 1961-1971
    • Gustavsson, J.1
  • 98
    • 0030731231 scopus 로고    scopus 로고
    • Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities
    • Couet J., et al. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 1997, 272:30429-30438.
    • (1997) J. Biol. Chem. , vol.272 , pp. 30429-30438
    • Couet, J.1
  • 99
    • 0029664995 scopus 로고    scopus 로고
    • Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae
    • Shaul P.W., et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 1996, 271:6518-6522.
    • (1996) J. Biol. Chem. , vol.271 , pp. 6518-6522
    • Shaul, P.W.1
  • 100
    • 0029836236 scopus 로고    scopus 로고
    • Insulin-stimulated glucose uptake involves the transition of glucose transporters to a caveolae-rich fraction within the plasma membrane: implications for type II diabetes
    • Gustavsson J., et al. Insulin-stimulated glucose uptake involves the transition of glucose transporters to a caveolae-rich fraction within the plasma membrane: implications for type II diabetes. Mol. Med. 1996, 2:367-372.
    • (1996) Mol. Med. , vol.2 , pp. 367-372
    • Gustavsson, J.1
  • 101
    • 0029901663 scopus 로고    scopus 로고
    • Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling
    • Garcia-Cardena G., et al. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:6448-6453.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 6448-6453
    • Garcia-Cardena, G.1
  • 102
    • 0029803093 scopus 로고    scopus 로고
    • Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases
    • Li S., et al. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 1996, 271:29182-29190.
    • (1996) J. Biol. Chem. , vol.271 , pp. 29182-29190
    • Li, S.1
  • 103
    • 0030770629 scopus 로고    scopus 로고
    • Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase
    • Michel J.B., et al. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J. Biol. Chem. 1997, 272:25907-25912.
    • (1997) J. Biol. Chem. , vol.272 , pp. 25907-25912
    • Michel, J.B.1
  • 104
    • 0030662249 scopus 로고    scopus 로고
    • Interaction of neuronal nitric-oxide synthase with caveolin-in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain
    • Venema V.J., et al. Interaction of neuronal nitric-oxide synthase with caveolin-in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J. Biol. Chem. 1997, 272:28187-28190.
    • (1997) J. Biol. Chem. , vol.272 , pp. 28187-28190
    • Venema, V.J.1
  • 105
    • 0035923728 scopus 로고    scopus 로고
    • Distinction between signaling mechanisms in lipid rafts vs. caveolae
    • Sowa G., et al. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:14072-14077.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 14072-14077
    • Sowa, G.1
  • 106
    • 77955846453 scopus 로고    scopus 로고
    • ENOS phosphorylation in health and disease
    • Kolluru G.K., et al. eNOS phosphorylation in health and disease. Biochimie 2010, 92:1186-1198.
    • (2010) Biochimie , vol.92 , pp. 1186-1198
    • Kolluru, G.K.1
  • 107
    • 84857129673 scopus 로고    scopus 로고
    • The role of nitric oxide on endothelial function
    • Tousoulis D., et al. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10:4-18.
    • (2012) Curr. Vasc. Pharmacol. , vol.10 , pp. 4-18
    • Tousoulis, D.1
  • 108
    • 68849084669 scopus 로고    scopus 로고
    • Persistent eNOS activation secondary to caveolin-deficiency induces pulmonary hypertension in mice and humans through PKG nitration
    • Zhao Y.Y., et al. Persistent eNOS activation secondary to caveolin-deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J. Clin. Invest. 2009, 119:2009-2018.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2009-2018
    • Zhao, Y.Y.1
  • 109
    • 1642453778 scopus 로고    scopus 로고
    • Endothelial dysfunction in pulmonary hypertension
    • Budhiraja R., et al. Endothelial dysfunction in pulmonary hypertension. Circulation 2004, 109:159-165.
    • (2004) Circulation , vol.109 , pp. 159-165
    • Budhiraja, R.1
  • 110
    • 84864025624 scopus 로고    scopus 로고
    • Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions?
    • Collins B.M., et al. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions?. Dev. Cell 2012, 23:11-20.
    • (2012) Dev. Cell , vol.23 , pp. 11-20
    • Collins, B.M.1
  • 111
    • 84866443110 scopus 로고    scopus 로고
    • Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif?
    • Byrne D.P., et al. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif?. PLoS ONE 2012, 7:e44879.
    • (2012) PLoS ONE , vol.7 , pp. e44879
    • Byrne, D.P.1
  • 112
    • 84900447254 scopus 로고    scopus 로고
    • Deciphering the binding of caveolin-to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance
    • Trane A.E., et al. Deciphering the binding of caveolin-to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. J. Biol. Chem. 2014, 289:13273-13283.
    • (2014) J. Biol. Chem. , vol.289 , pp. 13273-13283
    • Trane, A.E.1
  • 113
    • 84924308256 scopus 로고    scopus 로고
    • Identification of caveolar resident proteins in ventricular myocytes using a quantitative proteomic approach: dynamic changes in caveolar composition following adrenoceptor activation
    • Wypijewski K.J., et al. Identification of caveolar resident proteins in ventricular myocytes using a quantitative proteomic approach: dynamic changes in caveolar composition following adrenoceptor activation. Mol. Cell. Proteomics 2015, 14:596-608.
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 596-608
    • Wypijewski, K.J.1
  • 114
    • 0016754249 scopus 로고
    • The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths
    • Dulhunty A.F., Franzini-Armstrong C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 1975, 250:513-539.
    • (1975) J. Physiol. , vol.250 , pp. 513-539
    • Dulhunty, A.F.1    Franzini-Armstrong, C.2
  • 115
    • 79551677684 scopus 로고    scopus 로고
    • Cells respond to mechanical stress by rapid disassembly of caveolae
    • Sinha B., et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144:402-413.
    • (2011) Cell , vol.144 , pp. 402-413
    • Sinha, B.1
  • 116
    • 84898722791 scopus 로고    scopus 로고
    • Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae
    • Gambin Y., et al. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. Elife 2014, 3:e01434.
    • (2014) Elife , vol.3
    • Gambin, Y.1
  • 117
    • 81355161222 scopus 로고    scopus 로고
    • Caveolae respond to cell stretch and contribute to stretch-induced signaling
    • Gervasio O.L., et al. Caveolae respond to cell stretch and contribute to stretch-induced signaling. J. Cell Sci. 2011, 124:3581-3590.
    • (2011) J. Cell Sci. , vol.124 , pp. 3581-3590
    • Gervasio, O.L.1
  • 118
    • 84884686757 scopus 로고    scopus 로고
    • Caveolae internalization repairs wounded cells and muscle fibers
    • Corrotte M., et al. Caveolae internalization repairs wounded cells and muscle fibers. Elife 2013, 2:e00926.
    • (2013) Elife , vol.2
    • Corrotte, M.1
  • 119
    • 70349255588 scopus 로고    scopus 로고
    • Myoferlin is critical for endocytosis in endothelial cells
    • Bernatchez P.N., et al. Myoferlin is critical for endocytosis in endothelial cells. Am. J. Physiol. Cell Physiol. 2009, 297:C484-C492.
    • (2009) Am. J. Physiol. Cell Physiol. , vol.297 , pp. C484-C492
    • Bernatchez, P.N.1
  • 120
    • 84980350780 scopus 로고    scopus 로고
    • Caveolae protect endothelial cells from membrane rupture during increased cardiac output
    • Cheng J.P.X., et al. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J. Cell Biol. 2015, 211:53-61.
    • (2015) J. Cell Biol. , vol.211 , pp. 53-61
    • Cheng, J.P.X.1
  • 121
    • 19944428563 scopus 로고    scopus 로고
    • Endothelial-specific expression of caveolin-impairs microvascular permeability and angiogenesis
    • Bauer P.M., et al. Endothelial-specific expression of caveolin-impairs microvascular permeability and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:204-209.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 204-209
    • Bauer, P.M.1
  • 122
    • 84958097710 scopus 로고    scopus 로고
    • Caveolae - mechanosensitive membrane invaginations linked to actin filaments
    • Echarri A., Del Pozo M.A. Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J. Cell Sci. 2015, 128:2747-2758.
    • (2015) J. Cell Sci. , vol.128 , pp. 2747-2758
    • Echarri, A.1    Del Pozo, M.A.2
  • 123
    • 84892799133 scopus 로고    scopus 로고
    • Shear stress activates eNOS at the endothelial apical surface through 1 containing integrins and caveolae
    • Yang B., Rizzo V. Shear stress activates eNOS at the endothelial apical surface through 1 containing integrins and caveolae. Cell. Mol. Bioeng. 2013, 6:346-354.
    • (2013) Cell. Mol. Bioeng. , vol.6 , pp. 346-354
    • Yang, B.1    Rizzo, V.2
  • 124
    • 84869115072 scopus 로고    scopus 로고
    • Phosphocaveolin-is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation
    • Joshi B., et al. Phosphocaveolin-is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J. Cell Biol. 2012, 199:425-435.
    • (2012) J. Cell Biol. , vol.199 , pp. 425-435
    • Joshi, B.1
  • 125
    • 34248513296 scopus 로고    scopus 로고
    • Participation of caveolae in β1 integrin-mediated mechanotransduction
    • Radel C., et al. Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochem. Biophys. Res. Commun. 2007, 358:626-631.
    • (2007) Biochem. Biophys. Res. Commun. , vol.358 , pp. 626-631
    • Radel, C.1
  • 126
    • 33846018434 scopus 로고    scopus 로고
    • RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-interaction
    • Peng F., et al. RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-interaction. J. Am. Soc. Nephrol. 2007, 18:189-198.
    • (2007) J. Am. Soc. Nephrol. , vol.18 , pp. 189-198
    • Peng, F.1
  • 127
    • 49649095969 scopus 로고    scopus 로고
    • Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover
    • Shi F., Sottile J. Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell Sci. 2008, 121:2360-2371.
    • (2008) J. Cell Sci. , vol.121 , pp. 2360-2371
    • Shi, F.1    Sottile, J.2
  • 128
    • 79551484695 scopus 로고    scopus 로고
    • P190 RhoGTPase-activating protein links the β1 integrin/caveolin-mechanosignaling complex to RhoA and actin remodeling
    • Yang B., et al. p190 RhoGTPase-activating protein links the β1 integrin/caveolin-mechanosignaling complex to RhoA and actin remodeling. Arterioscler. Thromb. Vasc. Biol. 2011, 31:376-383.
    • (2011) Arterioscler. Thromb. Vasc. Biol. , vol.31 , pp. 376-383
    • Yang, B.1
  • 129
    • 84937396207 scopus 로고    scopus 로고
    • Caveolin modulates integrin function and mechanical activation in the cardiomyocyte
    • Israeli-Rosenberg S., et al. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J. 2015, 29:374-384.
    • (2015) FASEB J. , vol.29 , pp. 374-384
    • Israeli-Rosenberg, S.1
  • 130
    • 79959947008 scopus 로고    scopus 로고
    • Biomechanical remodeling of the microenvironment by stromal caveolin-favors tumor invasion and metastasis
    • Goetz J.G., et al. Biomechanical remodeling of the microenvironment by stromal caveolin-favors tumor invasion and metastasis. Cell 2011, 146:148-163.
    • (2011) Cell , vol.146 , pp. 148-163
    • Goetz, J.G.1
  • 131
    • 26944437142 scopus 로고    scopus 로고
    • Phospho-caveolin-mediates integrin-regulated membrane domain internalization
    • del Pozo M.A., et al. Phospho-caveolin-mediates integrin-regulated membrane domain internalization. Nat. Cell Biol. 2005, 7:901-908.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 901-908
    • del Pozo, M.A.1
  • 132
    • 0035896560 scopus 로고    scopus 로고
    • Cellular stress induces the tyrosine phosphorylation of caveolin-(Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress
    • Volonte D., et al. Cellular stress induces the tyrosine phosphorylation of caveolin-(Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 2001, 276:8094-8103.
    • (2001) J. Biol. Chem. , vol.276 , pp. 8094-8103
    • Volonte, D.1
  • 133
    • 0345582159 scopus 로고    scopus 로고
    • Caveolin-in muscular dystrophy
    • McNally E.M., et al. Caveolin-in muscular dystrophy. Hum. Mol. Genet. 1998, 7:871-877.
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 871-877
    • McNally, E.M.1
  • 134
    • 1342267006 scopus 로고    scopus 로고
    • Caveolinopathies: mutations in caveolin-cause four distinct autosomal dominant muscle diseases
    • Woodman S.E., et al. Caveolinopathies: mutations in caveolin-cause four distinct autosomal dominant muscle diseases. Neurology 2004, 62:538-543.
    • (2004) Neurology , vol.62 , pp. 538-543
    • Woodman, S.E.1
  • 135
    • 70349195987 scopus 로고    scopus 로고
    • Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy
    • Hayashi Y.K., et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 2009, 119:2623-2633.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2623-2633
    • Hayashi, Y.K.1
  • 136
    • 84864330965 scopus 로고    scopus 로고
    • Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension
    • Austin E.D., et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet. 2012, 5:336-343.
    • (2012) Circ. Cardiovasc. Genet. , vol.5 , pp. 336-343
    • Austin, E.D.1
  • 137
    • 79551588858 scopus 로고    scopus 로고
    • Distinct roles of endothelial and adipocyte caveolin-in macrophage infiltration and adipose tissue metabolic activity
    • Briand N., et al. Distinct roles of endothelial and adipocyte caveolin-in macrophage infiltration and adipose tissue metabolic activity. Diabetes 2011, 60:448-453.
    • (2011) Diabetes , vol.60 , pp. 448-453
    • Briand, N.1
  • 138
    • 84876741554 scopus 로고    scopus 로고
    • Cavin1; a regulator of lung function and macrophage phenotype
    • Govender P., et al. Cavin1; a regulator of lung function and macrophage phenotype. PLoS ONE 2013, 8:e62045.
    • (2013) PLoS ONE , vol.8
    • Govender, P.1
  • 139
    • 84866864613 scopus 로고    scopus 로고
    • Caveolin-deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model
    • Martin S., et al. Caveolin-deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS ONE 2012, 7:e46242.
    • (2012) PLoS ONE , vol.7
    • Martin, S.1
  • 140
    • 0037064033 scopus 로고    scopus 로고
    • Caveolin-knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade
    • Woodman S.E., et al. Caveolin-knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J. Biol. Chem. 2002, 277:38988-38997.
    • (2002) J. Biol. Chem. , vol.277 , pp. 38988-38997
    • Woodman, S.E.1
  • 141
    • 10744220034 scopus 로고    scopus 로고
    • Identification and functional analysis of a caveolin-mutation associated with familial hypertrophic cardiomyopathy
    • Hayashi T., et al. Identification and functional analysis of a caveolin-mutation associated with familial hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2004, 313:178-184.
    • (2004) Biochem. Biophys. Res. Commun. , vol.313 , pp. 178-184
    • Hayashi, T.1
  • 142
    • 0037663884 scopus 로고    scopus 로고
    • Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue
    • Cohen A.W., et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 2003, 285:C222-C235.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.285 , pp. C222-C235
    • Cohen, A.W.1
  • 144
    • 42749088607 scopus 로고    scopus 로고
    • The adverse cardiopulmonary phenotype of caveolin-deficient mice is mediated by a dysfunctional endothelium
    • Wunderlich C., et al. The adverse cardiopulmonary phenotype of caveolin-deficient mice is mediated by a dysfunctional endothelium. J. Mol. Cell. Cardiol. 2008, 44:938-947.
    • (2008) J. Mol. Cell. Cardiol. , vol.44 , pp. 938-947
    • Wunderlich, C.1
  • 145
    • 84958130039 scopus 로고    scopus 로고
    • Newly identified caveolin-mutation associated with heritable human pulmonary arterial hypertension mediates hyperproliferation via augmented calcium signaling
    • 1089.10
    • Marsboom G., et al. Newly identified caveolin-mutation associated with heritable human pulmonary arterial hypertension mediates hyperproliferation via augmented calcium signaling. FASEB J. 2014, 28(Suppl.). 1089.10.
    • (2014) FASEB J. , vol.28
    • Marsboom, G.1
  • 146
    • 85009080421 scopus 로고    scopus 로고
    • Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF
    • Sward K., et al. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol. Rep. 2013, 1:e00008.
    • (2013) Physiol. Rep. , vol.1
    • Sward, K.1
  • 147
    • 0036123019 scopus 로고    scopus 로고
    • Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae
    • Razani B., et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 2002, 22:2329-2344.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 2329-2344
    • Razani, B.1
  • 148
    • 75749097235 scopus 로고    scopus 로고
    • Genome-wide association study of PR interval
    • Pfeufer A., et al. Genome-wide association study of PR interval. Nat. Genet. 2010, 42:153-159.
    • (2010) Nat. Genet. , vol.42 , pp. 153-159
    • Pfeufer, A.1
  • 149
    • 33751016041 scopus 로고    scopus 로고
    • Mutant caveolin-induces persistent late sodium current and is associated with long-QT syndrome
    • Vatta M., et al. Mutant caveolin-induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006, 114:2104-2112.
    • (2006) Circulation , vol.114 , pp. 2104-2112
    • Vatta, M.1
  • 150
    • 33846510967 scopus 로고    scopus 로고
    • Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3
    • Cronk L.B., et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 2007, 4:161-166.
    • (2007) Heart Rhythm , vol.4 , pp. 161-166
    • Cronk, L.B.1
  • 151
    • 84883619662 scopus 로고    scopus 로고
    • Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy
    • Ardissone A., et al. Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy. BMC Med. Genet. 2013, 14:89.
    • (2013) BMC Med. Genet. , vol.14 , pp. 89
    • Ardissone, A.1
  • 152
    • 0031920515 scopus 로고    scopus 로고
    • Mutations in the caveolin-gene cause autosomal dominant limb-girdle muscular dystrophy
    • Minetti C., et al. Mutations in the caveolin-gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet. 1998, 18:365-368.
    • (1998) Nat. Genet. , vol.18 , pp. 365-368
    • Minetti, C.1
  • 153
    • 0034944010 scopus 로고    scopus 로고
    • Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease
    • Betz R.C., et al. Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat. Genet. 2001, 28:218-219.
    • (2001) Nat. Genet. , vol.28 , pp. 218-219
    • Betz, R.C.1
  • 154
    • 0035956556 scopus 로고    scopus 로고
    • A sporadic case of rippling muscle disease caused by a de novo caveolin-mutation
    • Vorgerd M., et al. A sporadic case of rippling muscle disease caused by a de novo caveolin-mutation. Neurology 2001, 57:2273-2277.
    • (2001) Neurology , vol.57 , pp. 2273-2277
    • Vorgerd, M.1
  • 155
    • 0035877753 scopus 로고    scopus 로고
    • Caveolin-null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities
    • Galbiati F., et al. Caveolin-null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem. 2001, 276:21425-21433.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21425-21433
    • Galbiati, F.1
  • 156
    • 0037040994 scopus 로고    scopus 로고
    • Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities
    • Razani B., et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 2002, 277:8635-8647.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8635-8647
    • Razani, B.1
  • 157
    • 84896916990 scopus 로고    scopus 로고
    • Pleiotropic effects of cavin-deficiency on lipid metabolism
    • Ding S.Y., et al. Pleiotropic effects of cavin-deficiency on lipid metabolism. J. Biol. Chem. 2014, 289:8473-8483.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8473-8483
    • Ding, S.Y.1
  • 158
    • 41549088813 scopus 로고    scopus 로고
    • Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia
    • Cao H., et al. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008, 7:3.
    • (2008) Lipids Health Dis. , vol.7 , pp. 3
    • Cao, H.1
  • 159
    • 77957244115 scopus 로고    scopus 로고
    • A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4
    • Dwianingsih E.K., et al. A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol. Genet. Metab. 2010, 101:233-237.
    • (2010) Mol. Genet. Metab. , vol.101 , pp. 233-237
    • Dwianingsih, E.K.1
  • 160
    • 77956097576 scopus 로고    scopus 로고
    • Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations
    • Shastry S., et al. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am. J. Med. Genet. A 2010, 152A:2245-2253.
    • (2010) Am. J. Med. Genet. A , vol.152A , pp. 2245-2253
    • Shastry, S.1
  • 161
    • 84911884501 scopus 로고    scopus 로고
    • Caveolin-expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation
    • Briand N., et al. Caveolin-expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation. Diabetes 2014, 63:4032-4044.
    • (2014) Diabetes , vol.63 , pp. 4032-4044
    • Briand, N.1
  • 162
    • 84962146905 scopus 로고    scopus 로고
    • The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle
    • Lo H.P., et al. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell. Biol. 2015, 210:833-849.
    • (2015) J. Cell. Biol. , vol.210 , pp. 833-849
    • Lo, H.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.