메뉴 건너뛰기




Volumn 89, Issue , 2016, Pages 76-87

Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry

Author keywords

Activity dependent; Autism spectrum disorder; Drosophila; Excitation vs. inhibition; Fragile X syndrome; Optogenetics

Indexed keywords

FRAGILE X MENTAL RETARDATION PROTEIN; 4 AMINOBUTYRIC ACID RECEPTOR; DROSOPHILA PROTEIN; FRAGILE X MENTAL RETARDATION PROTEIN, DROSOPHILA;

EID: 84958025836     PISSN: 09699961     EISSN: 1095953X     Source Type: Journal    
DOI: 10.1016/j.nbd.2016.02.006     Document Type: Article
Times cited : (35)

References (86)
  • 1
    • 84867026349 scopus 로고    scopus 로고
    • Optimization of a GCaMP calcium indicator for neural activity imaging
    • Akerboom J., et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012, 32:13819-13840.
    • (2012) J Neurosci. , vol.32 , pp. 13819-13840
    • Akerboom, J.1
  • 2
    • 84884389523 scopus 로고    scopus 로고
    • Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway
    • Alamilla J., Gillespie D.C. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. PLoS One 2013, 8:e75688.
    • (2013) PLoS One , vol.8 , pp. e75688
    • Alamilla, J.1    Gillespie, D.C.2
  • 3
    • 0031710933 scopus 로고    scopus 로고
    • Increased transmitter release and aberrant synapse morphology in a Drosophila calmodulin mutant
    • Arredondo L., et al. Increased transmitter release and aberrant synapse morphology in a Drosophila calmodulin mutant. Genetics 1998, 150:265-274.
    • (1998) Genetics , vol.150 , pp. 265-274
    • Arredondo, L.1
  • 4
    • 84929216843 scopus 로고    scopus 로고
    • The neuronal architecture of the mushroom body provides a logic for associative learning
    • Aso Y., et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 2014, 3:e04577.
    • (2014) Elife , vol.3 , pp. e04577
    • Aso, Y.1
  • 5
    • 84958042710 scopus 로고    scopus 로고
    • Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila
    • Aso Y., et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 2014, 3:e04580.
    • (2014) Elife , vol.3 , pp. e04580
    • Aso, Y.1
  • 6
    • 40249094509 scopus 로고    scopus 로고
    • Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling
    • Ataman B., et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 2008, 57:705-718.
    • (2008) Neuron , vol.57 , pp. 705-718
    • Ataman, B.1
  • 7
    • 0038333642 scopus 로고    scopus 로고
    • Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination
    • Barski J.J., et al. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J. Neurosci. 2003, 23:3469-3477.
    • (2003) J. Neurosci. , vol.23 , pp. 3469-3477
    • Barski, J.J.1
  • 8
    • 34248995257 scopus 로고    scopus 로고
    • The action potential in mammalian central neurons
    • Bean B.P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 2007, 8:451-465.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 451-465
    • Bean, B.P.1
  • 9
    • 3042647610 scopus 로고    scopus 로고
    • The mGluR theory of fragile X mental retardation
    • Bear M.F., et al. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004, 27:370-377.
    • (2004) Trends Neurosci. , vol.27 , pp. 370-377
    • Bear, M.F.1
  • 10
    • 77957978974 scopus 로고    scopus 로고
    • A genetic mosaic approach for neural circuit mapping in Drosophila
    • Bohm R.A., et al. A genetic mosaic approach for neural circuit mapping in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:16378-16383.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 16378-16383
    • Bohm, R.A.1
  • 12
    • 84898428838 scopus 로고    scopus 로고
    • Channelopathies and dendritic dysfunction in fragile X syndrome
    • Brager D.H., Johnston D. Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res. Bull. 2014, 103:11-17.
    • (2014) Brain Res. Bull. , vol.103 , pp. 11-17
    • Brager, D.H.1    Johnston, D.2
  • 13
    • 77954145556 scopus 로고    scopus 로고
    • Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack
    • Brown M.R., et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 2010, 13:819-821.
    • (2010) Nat. Neurosci. , vol.13 , pp. 819-821
    • Brown, M.R.1
  • 14
    • 84929584074 scopus 로고    scopus 로고
    • The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome
    • Cea-Del Rio C.A., Huntsman M.M. The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front. Cell. Neurosci. 2014, 8:245.
    • (2014) Front. Cell. Neurosci. , vol.8 , pp. 245
    • Cea-Del Rio, C.A.1    Huntsman, M.M.2
  • 15
    • 0042624778 scopus 로고    scopus 로고
    • The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences
    • Chen L., et al. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 2003, 120:1005-1017.
    • (2003) Neuroscience , vol.120 , pp. 1005-1017
    • Chen, L.1
  • 16
    • 84904958428 scopus 로고    scopus 로고
    • Noninvasive optical inhibition with a red-shifted microbial rhodopsin
    • Chuong A.S., et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 2014, 17:1123-1129.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1123-1129
    • Chuong, A.S.1
  • 17
    • 84939478289 scopus 로고    scopus 로고
    • Altered neuronal and circuit excitability in fragile X syndrome
    • Contractor A., et al. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 2015, 87:699-715.
    • (2015) Neuron , vol.87 , pp. 699-715
    • Contractor, A.1
  • 18
    • 84907298254 scopus 로고    scopus 로고
    • Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling
    • Dani N., et al. Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J. Neurosci. 2014, 34:13047-13065.
    • (2014) J. Neurosci. , vol.34 , pp. 13047-13065
    • Dani, N.1
  • 19
    • 84907284540 scopus 로고    scopus 로고
    • Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications
    • Dawydow A., et al. Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:13972-13977.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 13972-13977
    • Dawydow, A.1
  • 20
    • 79960955668 scopus 로고    scopus 로고
    • Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome
    • Deng P.Y., et al. Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome. J. Neurosci. 2011, 31:10971-10982.
    • (2011) J. Neurosci. , vol.31 , pp. 10971-10982
    • Deng, P.Y.1
  • 21
    • 84874256375 scopus 로고    scopus 로고
    • FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels
    • Deng P.Y., et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 2013, 77:696-711.
    • (2013) Neuron , vol.77 , pp. 696-711
    • Deng, P.Y.1
  • 22
    • 84893578436 scopus 로고    scopus 로고
    • Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models
    • Doll C.A., Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front. Cell. Neurosci. 2014, 8.
    • (2014) Front. Cell. Neurosci. , vol.8
    • Doll, C.A.1    Broadie, K.2
  • 23
    • 84930690233 scopus 로고    scopus 로고
    • Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory
    • Doll C.A., Broadie K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development 2015, 142:1346-1356.
    • (2015) Development , vol.142 , pp. 1346-1356
    • Doll, C.A.1    Broadie, K.2
  • 24
    • 17644362990 scopus 로고    scopus 로고
    • Developmental transformation of the release modality at the calyx of Held synapse
    • Fedchyshyn M.J., Wang L.Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 2005, 25:4131-4140.
    • (2005) J. Neurosci. , vol.25 , pp. 4131-4140
    • Fedchyshyn, M.J.1    Wang, L.Y.2
  • 25
    • 84902601046 scopus 로고    scopus 로고
    • Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density
    • Ferron L., et al. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 2014, 5:3628.
    • (2014) Nat. Commun. , vol.5 , pp. 3628
    • Ferron, L.1
  • 26
    • 0037453129 scopus 로고    scopus 로고
    • In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression
    • Fiala A., Spall T. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci. STKE 2003, 2003:PL6.
    • (2003) Sci. STKE , vol.2003 , pp. PL6
    • Fiala, A.1    Spall, T.2
  • 27
    • 80355131387 scopus 로고    scopus 로고
    • Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS
    • Fore T.R., et al. Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. J. Vis. Exp. 2001, 52:2649.
    • (2001) J. Vis. Exp. , vol.52 , pp. 2649
    • Fore, T.R.1
  • 28
    • 84952644599 scopus 로고    scopus 로고
    • Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons
    • Frickenhaus M., et al. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Sci. Rep. 2015, 5:9107.
    • (2015) Sci. Rep. , vol.5 , pp. 9107
    • Frickenhaus, M.1
  • 29
    • 50649095000 scopus 로고    scopus 로고
    • Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure
    • Gatto C.L., Broadie K. Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 2008, 135:2637-2648.
    • (2008) Development , vol.135 , pp. 2637-2648
    • Gatto, C.L.1    Broadie, K.2
  • 30
    • 66149123016 scopus 로고    scopus 로고
    • The fragile X mental retardation protein in circadian rhythmicity and memory consolidation
    • Gatto C.L., Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol. Neurobiol. 2009, 39:107-129.
    • (2009) Mol. Neurobiol. , vol.39 , pp. 107-129
    • Gatto, C.L.1    Broadie, K.2
  • 31
    • 80052650281 scopus 로고    scopus 로고
    • Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models
    • Gatto C.L., Broadie K. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci. 2010, 2:4.
    • (2010) Front Synaptic Neurosci. , vol.2 , pp. 4
    • Gatto, C.L.1    Broadie, K.2
  • 32
    • 84893554389 scopus 로고    scopus 로고
    • GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model
    • Gatto C.L., et al. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model. Neurobiol. Dis. 2014, 65:142-159.
    • (2014) Neurobiol. Dis. , vol.65 , pp. 142-159
    • Gatto, C.L.1
  • 33
    • 53849100522 scopus 로고    scopus 로고
    • Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome
    • Gibson J.R., et al. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 2008, 100:2615-2626.
    • (2008) J. Neurophysiol. , vol.100 , pp. 2615-2626
    • Gibson, J.R.1
  • 34
    • 84887233683 scopus 로고    scopus 로고
    • Circuit level defects in the developing neocortex of Fragile X mice
    • Goncalves J.T., et al. Circuit level defects in the developing neocortex of Fragile X mice. Nat. Neurosci. 2013, 16:903-909.
    • (2013) Nat. Neurosci. , vol.16 , pp. 903-909
    • Goncalves, J.T.1
  • 35
    • 79955748180 scopus 로고    scopus 로고
    • Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2
    • Gross C., et al. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. J. Neurosci. 2011, 31:5693-5698.
    • (2011) J. Neurosci. , vol.31 , pp. 5693-5698
    • Gross, C.1
  • 36
    • 75949119188 scopus 로고    scopus 로고
    • Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice
    • Harlow E.G., et al. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 2010, 65:385-398.
    • (2010) Neuron , vol.65 , pp. 385-398
    • Harlow, E.G.1
  • 37
    • 84891750581 scopus 로고    scopus 로고
    • The developmental switch in GABA polarity is delayed in fragile X mice
    • He Q., et al. The developmental switch in GABA polarity is delayed in fragile X mice. J. Neurosci. 2014, 34:446-450.
    • (2014) J. Neurosci. , vol.34 , pp. 446-450
    • He, Q.1
  • 38
    • 84867684397 scopus 로고    scopus 로고
    • Cell type-specific genomics of Drosophila neurons
    • Henry G.L., et al. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res. 2012, 40:9691-9704.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9691-9704
    • Henry, G.L.1
  • 39
    • 3943087045 scopus 로고    scopus 로고
    • Critical period regulation
    • Hensch T.K. Critical period regulation. Annu. Rev. Neurosci. 2004, 27:549-579.
    • (2004) Annu. Rev. Neurosci. , vol.27 , pp. 549-579
    • Hensch, T.K.1
  • 40
    • 84876858445 scopus 로고    scopus 로고
    • Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development
    • Herrera S.C., et al. Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet. 2013, 9:e1003446.
    • (2013) PLoS Genet. , vol.9 , pp. e1003446
    • Herrera, S.C.1
  • 41
    • 69249100460 scopus 로고    scopus 로고
    • Experience-dependent structural synaptic plasticity in the mammalian brain
    • Holtmaat A., Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 2009, 10:647-658.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 647-658
    • Holtmaat, A.1    Svoboda, K.2
  • 42
    • 84864430036 scopus 로고    scopus 로고
    • Optogenetic manipulation of neural circuits and behavior in Drosophila larvae
    • Honjo K., et al. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae. Nat. Protoc. 2012, 7:1470-1478.
    • (2012) Nat. Protoc. , vol.7 , pp. 1470-1478
    • Honjo, K.1
  • 43
    • 84884964988 scopus 로고    scopus 로고
    • Cav3-type alpha1T calcium channels mediate transient calcium currents that regulate repetitive firing in Drosophila antennal lobe PNs
    • Iniguez J., et al. Cav3-type alpha1T calcium channels mediate transient calcium currents that regulate repetitive firing in Drosophila antennal lobe PNs. J. Neurophysiol. 2013, 110:1490-1496.
    • (2013) J. Neurophysiol. , vol.110 , pp. 1490-1496
    • Iniguez, J.1
  • 44
    • 0035863624 scopus 로고    scopus 로고
    • Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-syndrome: a quantitative examination
    • Irwin S.A., et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-syndrome: a quantitative examination. Am. J. Med. Genet. 2001, 98:161-167.
    • (2001) Am. J. Med. Genet. , vol.98 , pp. 161-167
    • Irwin, S.A.1
  • 45
    • 84896691863 scopus 로고    scopus 로고
    • A systematic nomenclature for the insect brain
    • Ito K., et al. A systematic nomenclature for the insect brain. Neuron 2014, 81:755-765.
    • (2014) Neuron , vol.81 , pp. 755-765
    • Ito, K.1
  • 46
    • 84868114222 scopus 로고    scopus 로고
    • A GAL4-driver line resource for Drosophila neurobiology
    • Jenett A., et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2012, 2:991-1001.
    • (2012) Cell Rep. , vol.2 , pp. 991-1001
    • Jenett, A.1
  • 47
    • 84894223998 scopus 로고    scopus 로고
    • Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release
    • Kaeser P.S., Regehr W.G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 2014, 76:333-363.
    • (2014) Annu. Rev. Physiol. , vol.76 , pp. 333-363
    • Kaeser, P.S.1    Regehr, W.G.2
  • 48
    • 84905157802 scopus 로고    scopus 로고
    • Emerging role of the KCNT1 Slack channel in intellectual disability
    • Kim G.E., Kaczmarek L.K. Emerging role of the KCNT1 Slack channel in intellectual disability. Front. Cell. Neurosci. 2014, 8:209.
    • (2014) Front. Cell. Neurosci. , vol.8 , pp. 209
    • Kim, G.E.1    Kaczmarek, L.K.2
  • 49
    • 84929240851 scopus 로고    scopus 로고
    • Gustatory learning and processing in the Drosophila mushroom bodies
    • Kirkhart C., Scott K. Gustatory learning and processing in the Drosophila mushroom bodies. J. Neurosci. 2015, 35:5950-5958.
    • (2015) J. Neurosci. , vol.35 , pp. 5950-5958
    • Kirkhart, C.1    Scott, K.2
  • 50
    • 84895524488 scopus 로고    scopus 로고
    • Independent optical excitation of distinct neural populations
    • Klapoetke N.C., et al. Independent optical excitation of distinct neural populations. Nat. Methods 2014, 11:338-346.
    • (2014) Nat. Methods , vol.11 , pp. 338-346
    • Klapoetke, N.C.1
  • 51
    • 33846878716 scopus 로고    scopus 로고
    • Molecular mechanisms of autism: a possible role for Ca2+ signaling
    • Krey J.F., Dolmetsch R.E. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr. Opin. Neurobiol. 2007, 17:112-119.
    • (2007) Curr. Opin. Neurobiol. , vol.17 , pp. 112-119
    • Krey, J.F.1    Dolmetsch, R.E.2
  • 52
    • 81355150782 scopus 로고    scopus 로고
    • Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein
    • Lee H.Y., et al. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 2011, 72:630-642.
    • (2011) Neuron , vol.72 , pp. 630-642
    • Lee, H.Y.1
  • 53
    • 0036513485 scopus 로고    scopus 로고
    • The molecular basis of CaMKII function in synaptic and behavioural memory
    • Lisman J., et al. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 2002, 3:175-190.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 175-190
    • Lisman, J.1
  • 54
    • 84931009457 scopus 로고    scopus 로고
    • Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila
    • Liu Y., et al. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila. J. Comp. Neurol. 2015, 523:1840-1863.
    • (2015) J. Comp. Neurol. , vol.523 , pp. 1840-1863
    • Liu, Y.1
  • 55
    • 67849133734 scopus 로고    scopus 로고
    • Calcium signaling and the development of specific neuronal connections
    • Lohmann C. Calcium signaling and the development of specific neuronal connections. Prog. Brain Res. 2009, 175:443-452.
    • (2009) Prog. Brain Res. , vol.175 , pp. 443-452
    • Lohmann, C.1
  • 56
    • 16244369461 scopus 로고    scopus 로고
    • Regulation of dendritic growth and plasticity by local and global calcium dynamics
    • Lohmann C., Wong R.O. Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 2005, 37:403-409.
    • (2005) Cell Calcium , vol.37 , pp. 403-409
    • Lohmann, C.1    Wong, R.O.2
  • 57
    • 14544268543 scopus 로고    scopus 로고
    • Local calcium transients regulate the spontaneous motility of dendritic filopodia
    • Lohmann C., et al. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat. Neurosci. 2005, 8:305-312.
    • (2005) Nat. Neurosci. , vol.8 , pp. 305-312
    • Lohmann, C.1
  • 58
    • 84907221070 scopus 로고    scopus 로고
    • Modulation of the GABAergic pathway for the treatment of fragile X syndrome
    • Lozano R., et al. Modulation of the GABAergic pathway for the treatment of fragile X syndrome. Neuropsychiatr. Dis. Treat. 2014, 10:1769-1779.
    • (2014) Neuropsychiatr. Dis. Treat. , vol.10 , pp. 1769-1779
    • Lozano, R.1
  • 59
    • 0345168202 scopus 로고    scopus 로고
    • Spatiotemporal rescue of memory dysfunction in Drosophila
    • McGuire S.E., et al. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003, 302:1765-1768.
    • (2003) Science , vol.302 , pp. 1765-1768
    • McGuire, S.E.1
  • 60
    • 84924049354 scopus 로고    scopus 로고
    • Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neurodevelopmental disorders
    • Meredith R.M. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neurodevelopmental disorders. Neurosci. Biobehav. Rev. 2015, 50:180-188.
    • (2015) Neurosci. Biobehav. Rev. , vol.50 , pp. 180-188
    • Meredith, R.M.1
  • 61
    • 84921811954 scopus 로고    scopus 로고
    • Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures
    • Myrick L.K., et al. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc. Natl. Acad. Sci. U. S. A. 2015, 112:949-956.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 949-956
    • Myrick, L.K.1
  • 62
    • 34250007907 scopus 로고    scopus 로고
    • Developmental changes in potassium currents at the rat calyx of Held presynaptic terminal
    • Nakamura Y., Takahashi T. Developmental changes in potassium currents at the rat calyx of Held presynaptic terminal. J. Physiol. 2007, 581:1101-1112.
    • (2007) J. Physiol. , vol.581 , pp. 1101-1112
    • Nakamura, Y.1    Takahashi, T.2
  • 63
    • 84936942867 scopus 로고    scopus 로고
    • The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior
    • Ng F.S., Jackson F.R. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior. Front. Cell. Neurosci. 2015, 9:256.
    • (2015) Front. Cell. Neurosci. , vol.9 , pp. 256
    • Ng, F.S.1    Jackson, F.R.2
  • 64
    • 6944247816 scopus 로고    scopus 로고
    • The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation
    • Pan L., et al. The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr. Biol. 2004, 14:1863-1870.
    • (2004) Curr. Biol. , vol.14 , pp. 1863-1870
    • Pan, L.1
  • 65
    • 84873282879 scopus 로고    scopus 로고
    • A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons
    • Patel A.B., et al. A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons. J. Neurosci. 2013, 33:2593-2604.
    • (2013) J. Neurosci. , vol.33 , pp. 2593-2604
    • Patel, A.B.1
  • 66
    • 84856437186 scopus 로고    scopus 로고
    • Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity?
    • Portera-Cailliau C. Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity?. Neuroscientist 2012, 18:28-44.
    • (2012) Neuroscientist , vol.18 , pp. 28-44
    • Portera-Cailliau, C.1
  • 67
    • 66349129337 scopus 로고    scopus 로고
    • Temporal dynamics of neuronal activation by Channelrhodopsin-and TRPA1 determine behavioral output in Drosophila larvae
    • Pulver S.R., et al. Temporal dynamics of neuronal activation by Channelrhodopsin-and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 2009, 101:3075-3088.
    • (2009) J. Neurophysiol. , vol.101 , pp. 3075-3088
    • Pulver, S.R.1
  • 68
    • 61349164873 scopus 로고    scopus 로고
    • Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein
    • Repicky S., Broadie K. Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein. J. Neurophysiol. 2009, 101:672-687.
    • (2009) J. Neurophysiol. , vol.101 , pp. 672-687
    • Repicky, S.1    Broadie, K.2
  • 69
    • 84863205849 scopus 로고    scopus 로고
    • NIH Image to ImageJ: 25 years of image analysis
    • Schneider C.A., et al. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9:671-675.
    • (2012) Nat. Methods , vol.9 , pp. 671-675
    • Schneider, C.A.1
  • 70
    • 33749837676 scopus 로고    scopus 로고
    • Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae
    • Schroll C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 2006, 16:1741-1747.
    • (2006) Curr. Biol. , vol.16 , pp. 1741-1747
    • Schroll, C.1
  • 71
    • 77955393170 scopus 로고    scopus 로고
    • Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b
    • Strumbos J.G., et al. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J. Neurosci. 2010, 30:10263-10271.
    • (2010) J. Neurosci. , vol.30 , pp. 10263-10271
    • Strumbos, J.G.1
  • 72
    • 43749097858 scopus 로고    scopus 로고
    • Neuronal assemblies of the Drosophila mushroom body
    • Tanaka N.K., et al. Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 2008, 508:711-755.
    • (2008) J. Comp. Neurol. , vol.508 , pp. 711-755
    • Tanaka, N.K.1
  • 73
    • 84867824144 scopus 로고    scopus 로고
    • Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain
    • Tanaka N.K., et al. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J. Comp. Neurol. 2012, 520:4067-4130.
    • (2012) J. Comp. Neurol. , vol.520 , pp. 4067-4130
    • Tanaka, N.K.1
  • 74
    • 44449130390 scopus 로고    scopus 로고
    • Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning
    • Tessier C.R., Broadie K. Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 2008, 135:1547-1557.
    • (2008) Development , vol.135 , pp. 1547-1557
    • Tessier, C.R.1    Broadie, K.2
  • 75
    • 78349309391 scopus 로고    scopus 로고
    • The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons
    • Tessier C.R., Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol. Dis. 2011, 41:147-159.
    • (2011) Neurobiol. Dis. , vol.41 , pp. 147-159
    • Tessier, C.R.1    Broadie, K.2
  • 76
    • 80455131052 scopus 로고    scopus 로고
    • Molecular and genetic analysis of the Drosophila model of fragile X syndrome
    • Tessier C.R., Broadie K. Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl. Cell Differ. 2012, 54:119-156.
    • (2012) Results Probl. Cell Differ. , vol.54 , pp. 119-156
    • Tessier, C.R.1    Broadie, K.2
  • 77
    • 84860473697 scopus 로고    scopus 로고
    • Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome
    • Till S.M., et al. Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome. Hum. Mol. Genet. 2012, 21:2143-2156.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 2143-2156
    • Till, S.M.1
  • 78
    • 70449776464 scopus 로고    scopus 로고
    • Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway
    • Tomchik S.M., Davis R.L. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron 2009, 64:510-521.
    • (2009) Neuron , vol.64 , pp. 510-521
    • Tomchik, S.M.1    Davis, R.L.2
  • 79
    • 84891591866 scopus 로고    scopus 로고
    • Src64B phosphorylates Dumbfounded and regulates slit diaphragm dynamics: Drosophila as a model to study nephropathies
    • Tutor A.S., et al. Src64B phosphorylates Dumbfounded and regulates slit diaphragm dynamics: Drosophila as a model to study nephropathies. Development 2014, 141:367-376.
    • (2014) Development , vol.141 , pp. 367-376
    • Tutor, A.S.1
  • 80
    • 34547668505 scopus 로고    scopus 로고
    • Molecular architecture of smell and taste in Drosophila
    • Vosshall L.B., Stocker R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 2007, 30:505-533.
    • (2007) Annu. Rev. Neurosci. , vol.30 , pp. 505-533
    • Vosshall, L.B.1    Stocker, R.F.2
  • 81
    • 67650550794 scopus 로고    scopus 로고
    • Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex
    • Wang H., et al. Ca2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J. Biol. Chem. 2009, 284:18953-18962.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18953-18962
    • Wang, H.1
  • 82
    • 84862803170 scopus 로고    scopus 로고
    • New perspectives on the biology of fragile X syndrome
    • Wang T., et al. New perspectives on the biology of fragile X syndrome. Curr. Opin. Genet. Dev. 2012, 22:256-263.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 256-263
    • Wang, T.1
  • 83
    • 84947026492 scopus 로고    scopus 로고
    • Deciphering discord: how Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts
    • Weisz E.D., et al. Deciphering discord: how Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts. Exp. Neurol. 2015, 274(Pt A):14-24.
    • (2015) Exp. Neurol. , vol.274 , pp. 14-24
    • Weisz, E.D.1
  • 84
    • 0035977134 scopus 로고    scopus 로고
    • Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function
    • Zhang Y.Q., et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 2001, 107:591-603.
    • (2001) Cell , vol.107 , pp. 591-603
    • Zhang, Y.Q.1
  • 85
    • 84866172141 scopus 로고    scopus 로고
    • Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels
    • Zhang Y., et al. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J. Neurosci. 2012, 32:15318-15327.
    • (2012) J. Neurosci. , vol.32 , pp. 15318-15327
    • Zhang, Y.1
  • 86
    • 84925225933 scopus 로고    scopus 로고
    • Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice
    • Zhang Y., et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat. Neurosci. 2014, 17:1701-1709.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1701-1709
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.