메뉴 건너뛰기




Volumn 35, Issue 14, 2015, Pages 4139-4150

Prediction of long-term monthly precipitation using several soft computing methods without climatic data

Author keywords

Adaptive neuro fuzzy; Geographical inputs; Neural networks; Precipitation; Support vector regression

Indexed keywords

FORECASTING; FUZZY INFERENCE; FUZZY SYSTEMS; NEURAL NETWORKS; PRECIPITATION (CHEMICAL); SOFT COMPUTING; WATER RESOURCES;

EID: 84957940256     PISSN: 08998418     EISSN: 10970088     Source Type: Journal    
DOI: 10.1002/joc.4273     Document Type: Article
Times cited : (59)

References (57)
  • 1
    • 72149099060 scopus 로고    scopus 로고
    • Assessing the impact of climate change on water resources in Iran
    • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. 2009. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 45(10): W10434, doi: 10.1029/2008WR007615.
    • (2009) Water Resour. Res. , vol.45 , Issue.10 , pp. W10434
    • Abbaspour, K.C.1    Faramarzi, M.2    Ghasemi, S.S.3    Yang, H.4
  • 3
    • 75649096042 scopus 로고    scopus 로고
    • Prediction of long-term monthly temperature and rainfall in Turkey
    • Bilgili M, Sahin B. 2010. Prediction of long-term monthly temperature and rainfall in Turkey. Energy Source Part A 32(1): 60-71.
    • (2010) Energy Source Part A , vol.32 , Issue.1 , pp. 60-71
    • Bilgili, M.1    Sahin, B.2
  • 5
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. 2003. Support vector machines experts for time series forecasting. Neurocomputing 51: 321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 7
    • 33751205337 scopus 로고    scopus 로고
    • An ontology-based knowledge management system for flow and water quality modeling
    • Chau KW. 2007. An ontology-based knowledge management system for flow and water quality modeling. Adv. Eng. Softw. 38(3): 172-181.
    • (2007) Adv. Eng. Softw. , vol.38 , Issue.3 , pp. 172-181
    • Chau, K.W.1
  • 8
    • 33845428421 scopus 로고    scopus 로고
    • Intelligent manipulation and calibration of parameters for hydrological models
    • Chen W, Chau KW. 2006. Intelligent manipulation and calibration of parameters for hydrological models. Int. J. Environ. Pollut. 28(3-4): 432-447.
    • (2006) Int. J. Environ. Pollut. , vol.28 , Issue.3-4 , pp. 432-447
    • Chen, W.1    Chau, K.W.2
  • 9
    • 24944573867 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan Reservoir using artificial neural network models
    • Cheng CT. 2005. Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. Lect. Notes Comput. Sci. 3498: 1040-1045.
    • (2005) Lect. Notes Comput. Sci. , vol.3498 , pp. 1040-1045
    • Cheng, C.T.1
  • 10
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. 1994. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3): 267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 12
    • 0013391977 scopus 로고    scopus 로고
    • Chapter 9: Extracting fuzzy rules from data for function approximation and pattern classification
    • In, Dubois D, Prade H, Yager R (eds). Springer: Berlin
    • Chiu S. 1997. Chapter 9: Extracting fuzzy rules from data for function approximation and pattern classification. In Fuzzy Information Engineering: A Guided Tour of Applications, Dubois D, Prade H, Yager R (eds). Springer: Berlin, 149-162.
    • (1997) Fuzzy Information Engineering: A Guided Tour of Applications , pp. 149-162
    • Chiu, S.1
  • 14
    • 70449646234 scopus 로고    scopus 로고
    • Analysis of quantitative precipitation forecasts using the Dynamic State Index
    • Claußnitzer A, Névir P. 2009. Analysis of quantitative precipitation forecasts using the Dynamic State Index. Atmos. Res. 94(4): 694-703.
    • (2009) Atmos. Res. , vol.94 , Issue.4 , pp. 694-703
    • Claußnitzer, A.1    Névir, P.2
  • 15
    • 79551476028 scopus 로고    scopus 로고
    • Evapotranspiration estimation by two different neuro-fuzzy inference systems
    • Cobaner M. 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. J. Hydrol. 398(3): 292-302.
    • (2011) J. Hydrol. , vol.398 , Issue.3 , pp. 292-302
    • Cobaner, M.1
  • 17
    • 0021638989 scopus 로고
    • A hydrologically useful station precipitation model. Part I and II: formulation and application
    • 1597-1610
    • Georgakakos KP, Bras LR. 1984. A hydrologically useful station precipitation model. Part I and II: formulation and application. Water Resour. Res. 20(11): 1585-1596, 1597-1610.
    • (1984) Water Resour. Res. , vol.20 , Issue.11 , pp. 1585-1596
    • Georgakakos, K.P.1    Bras, L.R.2
  • 18
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Department of Electronics and Computer Science, University of Southampton, Southampton, UK.
    • Gunn SR. 1998. Support vector machines for classification and regression. Technical Report, ISIS, Department of Electronics and Computer Science, University of Southampton, Southampton, UK.
    • (1998) Technical Report, ISIS
    • Gunn, S.R.1
  • 19
    • 0032710602 scopus 로고    scopus 로고
    • Precipitation forecasting using a neural network
    • Hall T, Brooks HE, Doswell CA III. 1999. Precipitation forecasting using a neural network. Weather Forecast. 14(3): 338-345.
    • (1999) Weather Forecast. , vol.14 , Issue.3 , pp. 338-345
    • Hall, T.1    Brooks, H.E.2    Doswell, C.A.3
  • 21
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W, Nakamori Y, Wang SY. 2005. Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 32(10): 2513-2522.
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 22
    • 17044442585 scopus 로고    scopus 로고
    • Development of a fuzzy logic-based rainfall-runoff model
    • Hundecha Y, Bardossy A, Werner HW. 2001. Development of a fuzzy logic-based rainfall-runoff model. Hydrol. Sci. J. 46(3): 363-376.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.3 , pp. 363-376
    • Hundecha, Y.1    Bardossy, A.2    Werner, H.W.3
  • 23
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manage. Cyber. 23(3): 665-685.
    • (1993) IEEE Trans. Syst. Manage. Cyber. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 25
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. 2004. River flow modeling using artificial neural networks. J. Hydrol. Eng. 9(1): 60-63.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 26
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kisi O. 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique. J. Hydrol. 329: 636-646.
    • (2006) J. Hydrol. , vol.329 , pp. 636-646
    • Kisi, O.1
  • 27
    • 80053449485 scopus 로고    scopus 로고
    • Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models
    • Kisi O, Shiri J. 2011. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour. Manage. 25(13): 3135-3152.
    • (2011) Water Resour. Manage. , vol.25 , Issue.13 , pp. 3135-3152
    • Kisi, O.1    Shiri, J.2
  • 28
    • 84891740898 scopus 로고    scopus 로고
    • Prediction of long-term monthly air temperature using geographical inputs
    • Kisi O, Shiri J. 2014. Prediction of long-term monthly air temperature using geographical inputs. Int. J. Climatol. 34(1): 179-186.
    • (2014) Int. J. Climatol. , vol.34 , Issue.1 , pp. 179-186
    • Kisi, O.1    Shiri, J.2
  • 29
    • 84855232291 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • Kisi O, Nia AM, Gosheh MG, Tajabadi MRJ. 2012. Intermittent streamflow forecasting by using several data driven techniques. Water Resour. Manage. 26(2): 457-474.
    • (2012) Water Resour. Manage. , vol.26 , Issue.2 , pp. 457-474
    • Kisi, O.1    Nia, A.M.2    Gosheh, M.G.3    Tajabadi, M.R.J.4
  • 30
    • 84884380391 scopus 로고    scopus 로고
    • Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005
    • Kousari MR, Ahani H, Hendi-zadeh R. 2013. Temporal and spatial trend detection of maximum air temperature in Iran during 1960-2005. Glob. Planet. Change 111: 97-110.
    • (2013) Glob. Planet. Change , vol.111 , pp. 97-110
    • Kousari, M.R.1    Ahani, H.2    Hendi-zadeh, R.3
  • 31
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski RJ, Barros AP. 1998. Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev. 126(2): 470-482.
    • (1998) Mon. Weather Rev. , vol.126 , Issue.2 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 32
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin JY, Cheng CT, Chau KW. 2006. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J 51(4): 599-612.
    • (2006) Hydrol. Sci. J , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 33
    • 84878439205 scopus 로고    scopus 로고
    • Development of an effective data-driven model for hourly typhoon rainfall forecasting
    • Lin GF, Jhong BC, Chang CC. 2013. Development of an effective data-driven model for hourly typhoon rainfall forecasting. J. Hydrol. 495: 52-63.
    • (2013) J. Hydrol. , vol.495 , pp. 52-63
    • Lin, G.F.1    Jhong, B.C.2    Chang, C.C.3
  • 34
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil N, Chau KW. 2006. Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut. 28(3-4): 223-238.
    • (2006) Int. J. Environ. Pollut. , vol.28 , Issue.3-4 , pp. 223-238
    • Muttil, N.1    Chau, K.W.2
  • 35
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291(1): 52-66.
    • (2004) J. Hydrol. , vol.291 , Issue.1 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 36
    • 0029538471 scopus 로고
    • Evaluation of 33 years of quantitative precipitation forecasting at the NMC
    • Olson DA, Junker NW, Korty B. 1995. Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Weather Forecast. 10(3): 498-511.
    • (1995) Weather Forecast. , vol.10 , Issue.3 , pp. 498-511
    • Olson, D.A.1    Junker, N.W.2    Korty, B.3
  • 37
    • 33947537723 scopus 로고    scopus 로고
    • A recurrent support vector regression model in rainfall forecasting
    • Pai PF, Hong WC. 2007. A recurrent support vector regression model in rainfall forecasting. Hydrol. Processes 21(6): 819-827.
    • (2007) Hydrol. Processes , vol.21 , Issue.6 , pp. 819-827
    • Pai, P.F.1    Hong, W.C.2
  • 38
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kisi O. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 342(1): 199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 40
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • Sanikhani H, Kisi O. 2012. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour. Manage. 26(6): 1715-1729.
    • (2012) Water Resour. Manage. , vol.26 , Issue.6 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 41
    • 84868209993 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques
    • Sanikhani H, Kisi O, Nikpour MR, Dinpashoh Y. 2012. Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques. Water Resour. Manage. 26(15): 4347-4365.
    • (2012) Water Resour. Manage. , vol.26 , Issue.15 , pp. 4347-4365
    • Sanikhani, H.1    Kisi, O.2    Nikpour, M.R.3    Dinpashoh, Y.4
  • 42
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C, Liong S, Pasha M. 2001. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinf. 3: 141-152.
    • (2001) J. Hydroinf. , vol.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 43
    • 0031574318 scopus 로고    scopus 로고
    • Classification of rainfall into small-and large-scale events by statistical pattern recognition
    • Skaugen T. 1997. Classification of rainfall into small-and large-scale events by statistical pattern recognition. J. Hydrol. 200(1): 40-57.
    • (1997) J. Hydrol. , vol.200 , Issue.1 , pp. 40-57
    • Skaugen, T.1
  • 44
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process
    • Smith J, Eli RN. 1995. Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Manage. 121(6): 499-508.
    • (1995) J. Water Resour. Plan. Manage. , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 46
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan DM, Saheb SM. 2002. Modelling evaporation using an artificial neural network algorithm. Hydrol. Processes 16: 3189-3202.
    • (2002) Hydrol. Processes , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 47
    • 84860356830 scopus 로고    scopus 로고
    • Influence of lag time on event-based rainfall-runoff modeling using the data driven approach
    • Talei A, Chua LH. 2012. Influence of lag time on event-based rainfall-runoff modeling using the data driven approach. J. Hydrol. 438: 223-233.
    • (2012) J. Hydrol. , vol.438 , pp. 223-233
    • Talei, A.1    Chua, L.H.2
  • 48
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taormina R, Chau KW, Sethi R. 2012. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25(8): 1670-1676.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.8 , pp. 1670-1676
    • Taormina, R.1    Chau, K.W.2    Sethi, R.3
  • 49
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239(1): 132-147.
    • (2000) J. Hydrol. , vol.239 , Issue.1 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 52
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WC, Chau KW, Cheng CT, Qiu L. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374(3): 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 53
    • 84892843737 scopus 로고    scopus 로고
    • Comparative study of monthly inflow prediction methods for the three Gorges Reservoir
    • Wang Y, Guo S, Chen H, Zhou Y. 2014. Comparative study of monthly inflow prediction methods for the three Gorges Reservoir. Stoch. Environ. Res. Risk Assess. 28(3): 555-570.
    • (2014) Stoch. Environ. Res. Risk Assess. , vol.28 , Issue.3 , pp. 555-570
    • Wang, Y.1    Guo, S.2    Chen, H.3    Zhou, Y.4
  • 54
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu CL, Chau KW, Li YS. 2009. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45: W08432, doi: 10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45 , pp. W08432
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 55
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu CL, Chau KW, Fan C. 2010. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 389(1): 146-167.
    • (2010) J. Hydrol. , vol.389 , Issue.1 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3
  • 56
    • 0028482884 scopus 로고
    • Approximate clustering via the mountain method
    • Yager RR, Filev DP. 1994. Approximate clustering via the mountain method. IEEE Trans. Syst. Man Cybern. 24(8): 1279-1284.
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , Issue.8 , pp. 1279-1284
    • Yager, R.R.1    Filev, D.P.2
  • 57
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu PS, Chen ST, Chang IF. 2006. Support vector regression for real-time flood stage forecasting. J. Hydrol. 328(3): 704-716.
    • (2006) J. Hydrol. , vol.328 , Issue.3 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.