메뉴 건너뛰기




Volumn 10, Issue 5, 2015, Pages

Nonlinear spike-And-Slab sparse coding for interpretable image encoding

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CODING; CONTROLLED STUDY; IMAGE RECONSTRUCTION; MATHEMATICAL PARAMETERS; MAXIMUM A POSTERIORI; NONLINEAR COMBINATION OF COMPONENT; NONLINEAR SYSTEM; NORMAL DISTRIBUTION; PROCESS OPTIMIZATION; SPIKE AND SLAB SPARSE CODING; ALGORITHM; BOOK; COMPUTER ASSISTED DIAGNOSIS; DATA BASE; IMAGE PROCESSING; LEARNING;

EID: 84957588085     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0124088     Document Type: Article
Times cited : (9)

References (53)
  • 3
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • PMID: 14403679
    • Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology. 1959; 148(3):574-591. doi: 10.1113/jphysiol.1959.sp006308 PMID: 14403679.
    • (1959) The Journal of Physiology , vol.148 , Issue.3 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 4
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • PMID: 8637596
    • Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996; 381:607-9. doi: 10.1038/381607a0 PMID: 8637596.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 8
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statistical Society Series B. 1996; 58(1):267-288.
    • (1996) J Royal Statistical Society Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 11
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • June
    • Seeger M. Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal of Machine Learning Research. 2008 June; 9:759-813.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1
  • 12
    • 84877784500 scopus 로고    scopus 로고
    • Evaluating Bayesian and l1 approaches for sparse unsupervised learning
    • In
    • Mohamed S, Heller K, Ghahramani Z. Evaluating Bayesian and L1 Approaches for Sparse Unsu-pervised Learning. In: ICML. vol. 29; 2012.
    • (2012) ICML , vol.29
    • Mohamed, S.1    Heller, K.2    Ghahramani, Z.3
  • 13
    • 85162414745 scopus 로고    scopus 로고
    • Spike and Slab variational inference for multi-task and multiple kernel learning
    • In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Curran Associates, Inc
    • Lázaro-gredilla M, Titsias MK. Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in Neural Information Processing Systems. vol. 24. Curran Associates, Inc.; 2011. p. 2339-2347.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2339-2347
    • Lázaro-Gredilla, M.1    Titsias, M.K.2
  • 14
    • 84867135004 scopus 로고    scopus 로고
    • Large-scale feature learning with spike-and-slab sparse coding
    • In
    • Goodfellow I, Courville A, Bengio Y. Large-Scale Feature Learning With Spike-and-Slab Sparse Coding. In: ICML. vol. 29; 2012.
    • (2012) ICML , vol.29
    • Goodfellow, I.1    Courville, A.2    Bengio, Y.3
  • 15
    • 84908179317 scopus 로고    scopus 로고
    • A Truncated Variational EM Approach for Spike-and-Slab Sparse Coding
    • Sheikh AS, Shelton J, Lücke J. A Truncated Variational EM Approach for Spike-and-Slab Sparse Coding. Journal of Machine Learning Research. 2014; 15(1):2653-2687.
    • (2014) Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 2653-2687
    • Sheikh, A.S.1    Shelton, J.2    Lücke, J.3
  • 16
    • 78349238081 scopus 로고    scopus 로고
    • Expectation truncation and the benefits of Preselection in training generative models
    • Lücke J, Eggert J. Expectation Truncation And the Benefits of Preselection in Training Generative Models. Journal of Machine Learning Research. 2010; 11:2855-2900.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2855-2900
    • Lücke, J.1    Eggert, J.2
  • 18
    • 0036314487 scopus 로고    scopus 로고
    • Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
    • PMID: 12091567
    • Ringach D. Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex. Journal of Neurophysiology. 2002; 88:455-63. PMID: 12091567.
    • (2002) Journal of Neurophysiology , vol.88 , pp. 455-463
    • Ringach, D.1
  • 19
    • 84879535272 scopus 로고    scopus 로고
    • Are V1 simple cells optimized for visual occlusions? A comparative study
    • 06
    • Bornschein J, Henniges M, Lücke J. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study. PLoS Computational Biology. 2013 06; 9(6):e1003062.
    • (2013) PLoS Computational Biology , vol.9 , Issue.6 , pp. e1003062
    • Bornschein, J.1    Henniges, M.2    Lücke, J.3
  • 24
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho DL. Compressed sensing. IEEE Trans Inform Theory. 2006; 52:1289-1306. doi: 10.1109/TIT. 2006.871582.
    • (2006) IEEE Trans Inform Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 25
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan P, Zemel RS. Competition and Multiple Cause Models. Neural Computation. 1995; 7(3):565- 579. doi: 10.1162/neco.1995.7.3.565.
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 26
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • doi: 10.1162/neco.1995.7.1.51
    • Saund E. A Multiple Cause Mixture Model for Unsupervised Learning. Neural Computation. 1995; 7 (1):51-71. doi: 10.1162/neco.1995.7.1.51.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 51-71
    • Saund, E.1
  • 27
  • 29
    • 84898991472 scopus 로고    scopus 로고
    • Discovering hidden variables in noisy-or networks using quartet tests
    • In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors
    • Jernite Y, Halpern Y, Sontag D. Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors. Advances in Neural Information Processing Systems 26; 2013. p. 2355-2363.
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 2355-2363
    • Jernite, Y.1    Halpern, Y.2    Sontag, D.3
  • 30
    • 84893735667 scopus 로고    scopus 로고
    • Two expectation-maximization algorithms for Boolean factor analysis
    • Frolov AA, Husek D, Polyakov PY. Two Expectation-Maximization algorithms for Boolean Factor Analysis. Neurocomputing. 2014; 130:83-97. doi: 10.1016/j.neucom.2012.02.055.
    • (2014) Neurocomputing , vol.130 , pp. 83-97
    • Frolov, A.A.1    Husek, D.2    Polyakov, P.Y.3
  • 31
    • 84898972468 scopus 로고    scopus 로고
    • What are the invariant occlusive components of image patches? A probabilistic generative approach
    • In
    • Dai Z, Exarchakis G, Lücke J. What Are the Invariant Occlusive Components of Image Patches? A Probabilistic Generative Approach. In: Advances in Neural Information Processing Systems; 2013. p. 243-251.
    • (2013) Advances in Neural Information Processing Systems , pp. 243-251
    • Dai, Z.1    Exarchakis, G.2    Lücke, J.3
  • 32
    • 85009230793 scopus 로고    scopus 로고
    • Factorial models and refiltering for speech separation and denoising
    • In
    • Roweis ST. Factorial models and refiltering for speech separation and denoising. In: Proc. Eu-rospeech. vol. 7; 2003. p. 1009-1012.
    • (2003) Proc. Eu-rospeech , vol.7 , pp. 1009-1012
    • Roweis, S.T.1
  • 34
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Jul
    • Neal RM. Connectionist Learning of Belief Networks. Artificial Intelligence. 1992 Jul; 56(1):71-113. doi: 10.1016/0004-3702(92)90065-6.
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.M.1
  • 35
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • In: Jordan MI, editor. Kluwer
    • Neal R, Hinton G. A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants. In: Jordan MI, editor. Learning in Graphical Models. Kluwer; 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 37
    • 78049399622 scopus 로고    scopus 로고
    • Efficient sparse Bayesian learning via Gibbs sampling
    • In
    • Tan X, Li J, Stoica P. Efficient sparse Bayesian learning via Gibbs sampling. In: ICASSP; 2010. p. 3634-3637.
    • (2010) ICASSP , pp. 3634-3637
    • Tan, X.1    Li, J.2    Stoica, P.3
  • 41
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Dec, PMID: 9425546
    • Olshausen B, Field D. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research. 1997 Dec; 37(23):3311-3325. doi: 10.1016/S0042-6989(97)00169-7 PMID: 9425546.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 42
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren JH, van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London B. 1998; 265:359-66. doi: 10.1098/rspb.1998.0577.
    • (1998) Proceedings of the Royal Society of London B , vol.265 , pp. 359-366
    • Van, H.J.H.1    Van, D.S.A.2
  • 43
    • 0037319271 scopus 로고    scopus 로고
    • Receptive fields and response properties of neurons in layer 4 of ferret visual cortex
    • PMID: 12574476
    • Usrey WM, Sceniak MP, Chapman B. Receptive Fields and Response Properties of Neurons in Layer 4 of Ferret Visual Cortex. Journal of Neurophysiology. 2003; 89:1003-1015. doi: 10.1152/jn.00749. 2002 PMID: 12574476.
    • (2003) Journal of Neurophysiology , vol.89 , pp. 1003-1015
    • Usrey, W.M.1    Sceniak, M.P.2    Chapman, B.3
  • 44
    • 50549087261 scopus 로고    scopus 로고
    • Highly selective receptive fields in mouse visual cortex
    • PMID: 18650330
    • Niell C, Stryker M. Highly Selective Receptive Fields in Mouse Visual Cortex. The Journal of Neuroscience. 2008; 28(30):7520-7536. doi: 10.1523/JNEUROSCI.0623-08.2008 PMID: 18650330.
    • (2008) The Journal of Neuroscience , vol.28 , Issue.30 , pp. 7520-7536
    • Niell, C.1    Stryker, M.2
  • 45
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment
    • Jan, PMID: 21212356
    • Berkes P, Orban G, Lengyel M, Fiser J. Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Science. 2011 Jan; 331(6013):83-87. doi: 10.1126/science. 1195870 PMID: 21212356.
    • (2011) Science , vol.331 , Issue.6013 , pp. 83-87
    • Berkes, P.1    Orban, G.2    Lengyel, M.3    Fiser, J.4
  • 46
    • 1642317045 scopus 로고    scopus 로고
    • Generative binary codes
    • Haft M, Hofman R, Tresp V. Generative binary codes. Pattern Anal Appl. 2004; 6:269-84. doi: 10.1007/s10044-003-0194-x.
    • (2004) Pattern Anal Appl , vol.6 , pp. 269-284
    • Haft, M.1    Hofman, R.2    Tresp, V.3
  • 49
    • 84877781993 scopus 로고    scopus 로고
    • Natural images, Gaussian mixtures and dead leaves
    • In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ, editors
    • Zoran D, Weiss Y. "Natural Images, Gaussian Mixtures and Dead Leaves". In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ, editors. NIPS; 2012. p. 1745-1753.
    • (2012) NIPS , pp. 1745-1753
    • Zoran, D.1    Weiss, Y.2
  • 50
    • 84878745479 scopus 로고    scopus 로고
    • Highly over complete sparse coding
    • In: Proc. SPIE, 8651
    • Olshausen B. Highly over complete sparse coding. In: Proc. SPIE, 8651, Human Vision and Electronic Imaging XVIII; 2013.
    • (2013) Human Vision and Electronic Imaging , vol.18
    • Olshausen, B.1
  • 51
    • 33646697510 scopus 로고    scopus 로고
    • Learning image components for object recognition
    • Spratling M. Learning Image Components for Object Recognition. Journal of Machine Learning Research. 2006; 7:793-815.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 793-815
    • Spratling, M.1
  • 52
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer PO. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research. 2004; 5:1457-69.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 53
    • 84884210723 scopus 로고    scopus 로고
    • MahNMF: Manhattan non-negative matrix factorization
    • abs/1207.3438
    • Guan N, Tao D, Luo Z, Shawe-Taylor J. MahNMF: Manhattan Non-negative Matrix Factorization. CoRR. 2012;abs/1207.3438.
    • (2012) CoRR
    • Guan, N.1    Tao, D.2    Luo, Z.3    Shawe-Taylor, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.