메뉴 건너뛰기




Volumn , Issue , 2010, Pages

The maximal causes of natural scenes are edge filters

Author keywords

[No Author keywords available]

Indexed keywords

BANDPASS FILTERS; COMPUTER VISION; FUNCTIONS; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE;

EID: 85162025802     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (35)
  • 1
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen, D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 2
    • 0028416938 scopus 로고
    • Independent component analysis a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Proc, 36(3):287-314, 1994.
    • (1994) Signal Proc. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 3
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components" of natural scenes are edge filters
    • A. J. Bell, T. J. Sejnowski. The "independent components" of natural scenes are edge filters. Vision Research, 37(23):3327-38, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen, E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7):1483-1492, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 5
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, A. Ng. Efficient sparse coding algorithms. NIPS 22, 801-808, 2007.
    • (2007) NIPS , vol.22 , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.4
  • 6
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • M. W. Seeger. Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal of Machine Learning Research, 759-813, 2008.
    • (2008) Journal of Machine Learning Research , pp. 759-813
    • Seeger, M.W.1
  • 8
    • 85161971766 scopus 로고    scopus 로고
    • On sparsity and overcompleteness in image models
    • P. Berkes, R. Turner, M. Sahani. On sparsity and overcompleteness in image models. NIPS 20, 2008.
    • (2008) NIPS 20
    • Berkes, P.1    Turner, R.2    Sahani, M.3
  • 9
    • 84898938962 scopus 로고    scopus 로고
    • Learning sparse codes with a mixture-of-Gaussians prior
    • B. A. Olshausen, K. J. Millman. Learning sparse codes with a mixture-of-Gaussians prior. NIPS 12, 841-847, 2000.
    • (2000) NIPS , vol.12 , pp. 841-847
    • Olshausen, B.A.1    Millman, K.J.2
  • 10
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • M. Rehn, F. T. Sommer. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. J Comp Neurosci, 22(2):135-146, 2007.
    • (2007) J Comp Neurosci. , vol.22 , Issue.2 , pp. 135-146
    • Rehn, M.1    Sommer, F.T.2
  • 11
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces
    • A. Hyvärinen, P. Hoyer. Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7):1705-1720, 2000.
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 12
    • 84858738800 scopus 로고    scopus 로고
    • Hierarchical modeling of local image features through Lp-nested symmetric distributions
    • F. Sinz, E. P. Simoncelli, M. Bethge. Hierarchical modeling of local image features through Lp-nested symmetric distributions. NIPS 22, 1696-1704, 2009.
    • (2009) NIPS , vol.22 , pp. 1696-1704
    • Sinz, F.1    Simoncelli, E.P.2    Bethge, M.3
  • 13
    • 80054763439 scopus 로고    scopus 로고
    • The "tree-dependent components" of natural images are edge filters
    • D. Zoran, Y. Weiss. The "Tree-Dependent Components" of Natural Images are Edge Filters. NIPS 22, 2340-2348, 2009.
    • (2009) NIPS , vol.22 , pp. 2340-2348
    • Zoran, D.1    Weiss, Y.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-91, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 16
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • P. Dayan, R. S. Zemel. Competition and multiple cause models. Neural Computation, 7:565-579, 1995.
    • (1995) Neural Computation , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 17
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation, 7:51-71, 1995.
    • (1995) Neural Computation , vol.7 , pp. 51-71
    • Saund, E.1
  • 18
    • 84874771546 scopus 로고    scopus 로고
    • Nonlinear independent component analysis using ensemble learning: Experiments and discussion
    • H. Lappalainen, X. Giannakopoulos, A. Honkela, J. Karhunen. Nonlinear independent component analysis using ensemble learning: Experiments and discussion. Proc. ICA, 2000.
    • (2000) Proc. ICA
    • Lappalainen, H.1    Giannakopoulos, X.2    Honkela, A.3    Karhunen, J.4
  • 19
  • 20
    • 0035686705 scopus 로고    scopus 로고
    • Learning flexible sprites in video layers
    • N. Jojic, B. Frey. Learning flexible sprites in video layers. CVPR, 199-206, 2001.
    • (2001) CVPR , pp. 199-206
    • Jojic, N.1    Frey, B.2
  • 22
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, editor, Kluwer
    • R. Neal, G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 24
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 25
    • 0023583669 scopus 로고
    • An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex
    • J. P. Jones, L. A. Palmer. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):1233-1258, 1987.
    • (1987) Journal of Neurophysiology , vol.58 , Issue.6 , pp. 1233-1258
    • Jones, J.P.1    Palmer, L.A.2
  • 26
    • 83955163299 scopus 로고    scopus 로고
    • No evidence for active sparsification in the visual cortex
    • P. Berkes, B.L. White, J. Fiser. No evidence for active sparsification in the visual cortex. NIPS 22, 2009.
    • (2009) NIPS , vol.22
    • Berkes, P.1    White, B.L.2    Fiser, J.3
  • 27
    • 70449699801 scopus 로고    scopus 로고
    • Receptive field self-organization in a model of the fine-structure in V1 cortical columns
    • J. Lücke. Receptive field self-organization in a model of the fine-structure in V1 cortical columns. Neural Computation, 21(10):2805-2845, 2009.
    • (2009) Neural Computation , vol.21 , Issue.10 , pp. 2805-2845
    • Lücke, J.1
  • 28
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • J. H. van Hateren, A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc Roy Soc London B, 265:359-366, 1998.
    • (1998) Proc Roy Soc London B , vol.265 , pp. 359-366
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 29
    • 0029160319 scopus 로고
    • An emergent model of orientation selectivity in cat visual cortical simple cells
    • D. C. Somers, S. B. Nelson, M. Sur. An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of Neuroscience, 15:5448-5465, 1995.
    • (1995) The Journal of Neuroscience , vol.15 , pp. 5448-5465
    • Somers, D.C.1    Nelson, S.B.2    Sur, M.3
  • 30
    • 85162013978 scopus 로고    scopus 로고
    • Learning of representations in a canonical model of cortical columns
    • J. Lücke. Learning of representations in a canonical model of cortical columns. Cosyne 2006, 100, 2006.
    • (2006) Cosyne 2006 , vol.100
    • Lücke, J.1
  • 31
    • 33644900506 scopus 로고    scopus 로고
    • Topographic product models applied to natural scene statistics
    • S. Osindero, M. Welling, G. E. Hinton. Topographic product models applied to natural scene statistics. Neural Computation, 18:381-414, 2006.
    • (2006) Neural Computation , vol.18 , pp. 381-414
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 32
    • 85162065317 scopus 로고    scopus 로고
    • Functional requirements of a visual theory
    • D. Arathorn, B. Olshausen, J. DiCarlo. Functional requirements of a visual theory. Workshop Cosyne. www.cosyne.org/c/index.php?title=Functional- requirements-of-a-visual-theory, 2007.
    • (2007) Workshop Cosyne
    • Arathorn, D.1    Olshausen, B.2    Dicarlo, J.3
  • 33
    • 0036314487 scopus 로고    scopus 로고
    • Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
    • Data retrieved 2006 from manuelita.psych.ucla.edu/~dario
    • D. L. Ringach. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88:455-463, 2002. Data retrieved 2006 from manuelita.psych.ucla.edu/~dario.
    • (2002) Journal of Neurophysiology , vol.88 , pp. 455-463
    • Ringach, D.L.1
  • 34
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. A. Olshausen, D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23):3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.