-
1
-
-
0033561886
-
Independent factor analysis
-
URL citeseer.nj.nec.com/attias99independent.html
-
Hagai Attias. Independent Factor Analysis. Neural Computation, 11 (4):803-851, 1999. URL citeseer.nj.nec.com/attias99independent.html.
-
(1999)
Neural Computation
, vol.11
, Issue.4
, pp. 803-851
-
-
Attias, H.1
-
2
-
-
0003524537
-
-
Latent Variable Models and Factor Analysis. Oxford University Press
-
David Bartholomew and Martin Knott. Latent Variable Models and Factor Analysis, volume 7 of Kendall's Library of Statistics. Oxford University Press, 1999.
-
(1999)
Kendall's Library of Statistics
, vol.7
-
-
Bartholomew, D.1
Knott, M.2
-
3
-
-
0012479268
-
Latent variable models
-
Michael Jordan, editor. MIT Press
-
Christopher Bishop. Latent variable models. In Michael Jordan, editor, Learning in Graphical Models, pages 371-403. MIT Press, 1999a.
-
(1999)
Learning in Graphical Models
, pp. 371-403
-
-
Bishop, C.1
-
5
-
-
0141607824
-
Latent dirichlet allocation
-
Jan
-
David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, Jan 2003. URL http://www.cs.berkeley.edu/blei/papers/blei03a.ps.gz.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.1
Ng, A.2
Jordan, M.3
-
6
-
-
10944226934
-
Variational extensions to EM and multinomial PCA
-
URL citeseer.nj.nec.com/buntine02variational.html
-
th European Conference on Machine Learning, 2002. URL citeseer.nj.nec.com/buntine02variational.html.
-
(2002)
th European Conference on Machine Learning
-
-
Buntine, W.1
-
7
-
-
0038589432
-
Learning to probabilistically identify authoritative documents
-
Morgan Kaufmann, San Francisco, CA. URL citeseer.ist.psu.edu/ cohn00learning.html
-
th International Conference on Machine Learning, pages 167-174. Morgan Kaufmann, San Francisco, CA, 2000. URL citeseer.ist.psu.edu/cohn00learning.html.
-
(2000)
th International Conference on Machine Learning
, pp. 167-174
-
-
Cohn, D.1
Chang, H.2
-
8
-
-
17444392177
-
The missing link - A probabilistic model of document content and hypertext connectivity
-
URL citeseer.ist.psu.edu/cohn01missing.html
-
David Cohn and Thomas Hofmann. The missing link - a probabilistic model of document content and hypertext connectivity. In Neural Information Processing Systems 13, 2001. URL citeseer.ist.psu.edu/cohn01missing.html.
-
(2001)
Neural Information Processing Systems
, vol.13
-
-
Cohn, D.1
Hofmann, T.2
-
9
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Gregory Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
13
-
-
85156254941
-
Factorial hidden Markov models
-
David Touretzky, Michael Mozer, and Michael Hasselmo, editors. MIT Press. ISBN 0262201070. URL citeseer.nj.nec.com/article/ghahramani97factorial.html
-
Zoubin Ghahramani and Michael Jordan. Factorial hidden Markov models. In David Touretzky, Michael Mozer, and Michael Hasselmo, editors, Proceedings of Advances in Neural Information Processing Systems, volume 8, pages 472-478. MIT Press, 1995. ISBN 0262201070. URL citeseer.nj.nec.com/article/ ghahramani97factorial.html.
-
(1995)
Proceedings of Advances in Neural Information Processing Systems
, vol.8
, pp. 472-478
-
-
Ghahramani, Z.1
Jordan, M.2
-
14
-
-
0031268341
-
Factorial hidden Markov models
-
Zoubin Ghahramani and Michael Jordan. Factorial hidden Markov models. Machine Learning, 29: 245-273, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.2
-
15
-
-
0000987227
-
Causal independence for knowledge acquisition and inference
-
San Francisco, CA. Morgan Kaufmann Publishers
-
David Heckerman. Causal independence for knowledge acquisition and inference. In Proceedings of 9th Conference on Uncertainty in AI UAI'93, San Francisco, CA, 1993. Morgan Kaufmann Publishers.
-
(1993)
Proceedings of 9th Conference on Uncertainty in AI UAI'93
-
-
Heckerman, D.1
-
16
-
-
85026972772
-
Probabilistic latent semantic analysis
-
Stockholm. URL citeseer.nj.nec.com/hofmann99probabilistic.html
-
Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of Uncertainty in Artificial Intelligence, Stockholm, 1999a. URL citeseer.nj.nec.com/hofmann99probabilistic.html.
-
(1999)
Proceedings of Uncertainty in Artificial Intelligence
-
-
Hofmann, T.1
-
18
-
-
0033330288
-
Variational probabilistic inference and the QMR-DT network
-
URL citeseer.nj.nee.com/article/Jaakkola99variational.html
-
Tommi Jaakkola and Michael Jordan. Variational probabilistic inference and the QMR-DT network. Journal of Artificial Intelligence Research, 10:291-322, 1999. URL citeseer.nj.nee.com/article/Jaakkola99variational.html.
-
(1999)
Journal of Artificial Intelligence Research
, vol.10
, pp. 291-322
-
-
Jaakkola, T.1
Jordan, M.2
-
19
-
-
8644262205
-
Fast learning by bounding likelihoods in sigmoid type belief networks
-
David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors. The MIT Press. URL citeseer.ist.psu.edu/jaakkola96fast.html
-
Tommi Jaakkola, Lawrence Saul, and Michael Jordan. Fast learning by bounding likelihoods in sigmoid type belief networks. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 528-534. The MIT Press, 1996. URL citeseer.ist.psu.edu/jaakkola96fast.html.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 528-534
-
-
Jaakkola, T.1
Saul, L.2
Jordan, M.3
-
21
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
24
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Baysian methods for supervised neural networks
-
David MacKay. Probable networks and plausible predictions - a review of practical Baysian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, Issue.3
, pp. 469-505
-
-
MacKay, D.1
-
29
-
-
0000120766
-
Estimating the dimension of a model
-
Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
30
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: Part I. The probabilistic model and inference algorithms
-
Michael Shwe, Blackford Middleton, David Heckerman, Max Henrion, Eric Horvitz, Harold Lehmann, and Gregory Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: Part I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30:241-255, 1991.
-
(1991)
Methods of Information in Medicine
, vol.30
, pp. 241-255
-
-
Shwe, M.1
Middleton, B.2
Heckerman, D.3
Henrion, M.4
Horvitz, E.5
Lehmann, H.6
Cooper, G.7
-
32
-
-
0003520380
-
Probabilistic principal component analysis
-
Neural Computing Research Group, Aston University, September. URL citeseer.nj.nec.com/article/tipping97probabilistic.html
-
Michael Tipping and Christopher Bishop. Probabilistic principal component analysis. Technical Report NCRG/97/010, Neural Computing Research Group, Aston University, September 1997. URL citeseer.nj.nec.com/article/ tipping97probabilistic.html.
-
(1997)
Technical Report
, vol.NCRG-97-010
-
-
Tipping, M.1
Bishop, C.2
|