메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 2189-2213

Noisy-OR component analysis and its application to link analysis

Author keywords

Component analysis; Link analysis; Variational learning; Vector quantization

Indexed keywords

LATENT DIRICHLET ALLOCATION (LDA); LINK ANALYSIS; PROBABILISTIC LATENT SEMANTIC ANALYSIS (PLSA); VARIATIONAL LEARNING;

EID: 33750257091     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (64)

References (33)
  • 1
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • URL citeseer.nj.nec.com/attias99independent.html
    • Hagai Attias. Independent Factor Analysis. Neural Computation, 11 (4):803-851, 1999. URL citeseer.nj.nec.com/attias99independent.html.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 2
    • 0003524537 scopus 로고    scopus 로고
    • Latent Variable Models and Factor Analysis. Oxford University Press
    • David Bartholomew and Martin Knott. Latent Variable Models and Factor Analysis, volume 7 of Kendall's Library of Statistics. Oxford University Press, 1999.
    • (1999) Kendall's Library of Statistics , vol.7
    • Bartholomew, D.1    Knott, M.2
  • 3
    • 0012479268 scopus 로고    scopus 로고
    • Latent variable models
    • Michael Jordan, editor. MIT Press
    • Christopher Bishop. Latent variable models. In Michael Jordan, editor, Learning in Graphical Models, pages 371-403. MIT Press, 1999a.
    • (1999) Learning in Graphical Models , pp. 371-403
    • Bishop, C.1
  • 5
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • Jan
    • David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, Jan 2003. URL http://www.cs.berkeley.edu/blei/papers/blei03a.ps.gz.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 6
    • 10944226934 scopus 로고    scopus 로고
    • Variational extensions to EM and multinomial PCA
    • URL citeseer.nj.nec.com/buntine02variational.html
    • th European Conference on Machine Learning, 2002. URL citeseer.nj.nec.com/buntine02variational.html.
    • (2002) th European Conference on Machine Learning
    • Buntine, W.1
  • 7
    • 0038589432 scopus 로고    scopus 로고
    • Learning to probabilistically identify authoritative documents
    • Morgan Kaufmann, San Francisco, CA. URL citeseer.ist.psu.edu/ cohn00learning.html
    • th International Conference on Machine Learning, pages 167-174. Morgan Kaufmann, San Francisco, CA, 2000. URL citeseer.ist.psu.edu/cohn00learning.html.
    • (2000) th International Conference on Machine Learning , pp. 167-174
    • Cohn, D.1    Chang, H.2
  • 8
    • 17444392177 scopus 로고    scopus 로고
    • The missing link - A probabilistic model of document content and hypertext connectivity
    • URL citeseer.ist.psu.edu/cohn01missing.html
    • David Cohn and Thomas Hofmann. The missing link - a probabilistic model of document content and hypertext connectivity. In Neural Information Processing Systems 13, 2001. URL citeseer.ist.psu.edu/cohn01missing.html.
    • (2001) Neural Information Processing Systems , vol.13
    • Cohn, D.1    Hofmann, T.2
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Gregory Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 13
    • 85156254941 scopus 로고
    • Factorial hidden Markov models
    • David Touretzky, Michael Mozer, and Michael Hasselmo, editors. MIT Press. ISBN 0262201070. URL citeseer.nj.nec.com/article/ghahramani97factorial.html
    • Zoubin Ghahramani and Michael Jordan. Factorial hidden Markov models. In David Touretzky, Michael Mozer, and Michael Hasselmo, editors, Proceedings of Advances in Neural Information Processing Systems, volume 8, pages 472-478. MIT Press, 1995. ISBN 0262201070. URL citeseer.nj.nec.com/article/ ghahramani97factorial.html.
    • (1995) Proceedings of Advances in Neural Information Processing Systems , vol.8 , pp. 472-478
    • Ghahramani, Z.1    Jordan, M.2
  • 14
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Zoubin Ghahramani and Michael Jordan. Factorial hidden Markov models. Machine Learning, 29: 245-273, 1997.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.2
  • 15
    • 0000987227 scopus 로고
    • Causal independence for knowledge acquisition and inference
    • San Francisco, CA. Morgan Kaufmann Publishers
    • David Heckerman. Causal independence for knowledge acquisition and inference. In Proceedings of 9th Conference on Uncertainty in AI UAI'93, San Francisco, CA, 1993. Morgan Kaufmann Publishers.
    • (1993) Proceedings of 9th Conference on Uncertainty in AI UAI'93
    • Heckerman, D.1
  • 16
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis
    • Stockholm. URL citeseer.nj.nec.com/hofmann99probabilistic.html
    • Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of Uncertainty in Artificial Intelligence, Stockholm, 1999a. URL citeseer.nj.nec.com/hofmann99probabilistic.html.
    • (1999) Proceedings of Uncertainty in Artificial Intelligence
    • Hofmann, T.1
  • 18
    • 0033330288 scopus 로고    scopus 로고
    • Variational probabilistic inference and the QMR-DT network
    • URL citeseer.nj.nee.com/article/Jaakkola99variational.html
    • Tommi Jaakkola and Michael Jordan. Variational probabilistic inference and the QMR-DT network. Journal of Artificial Intelligence Research, 10:291-322, 1999. URL citeseer.nj.nee.com/article/Jaakkola99variational.html.
    • (1999) Journal of Artificial Intelligence Research , vol.10 , pp. 291-322
    • Jaakkola, T.1    Jordan, M.2
  • 19
    • 8644262205 scopus 로고    scopus 로고
    • Fast learning by bounding likelihoods in sigmoid type belief networks
    • David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors. The MIT Press. URL citeseer.ist.psu.edu/jaakkola96fast.html
    • Tommi Jaakkola, Lawrence Saul, and Michael Jordan. Fast learning by bounding likelihoods in sigmoid type belief networks. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 528-534. The MIT Press, 1996. URL citeseer.ist.psu.edu/jaakkola96fast.html.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 528-534
    • Jaakkola, T.1    Saul, L.2    Jordan, M.3
  • 21
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 24
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Baysian methods for supervised neural networks
    • David MacKay. Probable networks and plausible predictions - a review of practical Baysian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.1
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0026056182 scopus 로고
    • Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: Part I. The probabilistic model and inference algorithms
    • Michael Shwe, Blackford Middleton, David Heckerman, Max Henrion, Eric Horvitz, Harold Lehmann, and Gregory Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: Part I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30:241-255, 1991.
    • (1991) Methods of Information in Medicine , vol.30 , pp. 241-255
    • Shwe, M.1    Middleton, B.2    Heckerman, D.3    Henrion, M.4    Horvitz, E.5    Lehmann, H.6    Cooper, G.7
  • 32
    • 0003520380 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Neural Computing Research Group, Aston University, September. URL citeseer.nj.nec.com/article/tipping97probabilistic.html
    • Michael Tipping and Christopher Bishop. Probabilistic principal component analysis. Technical Report NCRG/97/010, Neural Computing Research Group, Aston University, September 1997. URL citeseer.nj.nec.com/article/ tipping97probabilistic.html.
    • (1997) Technical Report , vol.NCRG-97-010
    • Tipping, M.1    Bishop, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.