메뉴 건너뛰기




Volumn 6365 LNCS, Issue , 2010, Pages 450-457

Binary sparse coding

Author keywords

[No Author keywords available]

Indexed keywords

CODES (SYMBOLS); EQUIVALENCE CLASSES; FUNCTIONS; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 78349273171     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15995-4_56     Document Type: Conference Paper
Times cited : (26)

References (17)
  • 1
    • 0028416938 scopus 로고
    • Independent Component Analysis, a new concept?
    • Comon, P.: Independent Component Analysis, a new concept? Signal Process 36(3), 287-314 (1994)
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 2
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607-609 (1996)
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 3
    • 84898938962 scopus 로고    scopus 로고
    • Learning sparse codes with a mixture-of-Gaussians prior
    • Olshausen, B., Millman, K.: Learning sparse codes with a mixture-of-Gaussians prior. In: Proc NIPS, vol. 12, pp. 841-847 (2000)
    • (2000) Proc NIPS , vol.12 , pp. 841-847
    • Olshausen, B.1    Millman, K.2
  • 4
    • 0036314487 scopus 로고    scopus 로고
    • Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex
    • Ringach, D.L.: Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex. J. Neurophysiol. 88, 455-463 (2002)
    • (2002) J. Neurophysiol. , vol.88 , pp. 455-463
    • Ringach, D.L.1
  • 5
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Learning in Graphical Models, pp. 355-369 (1998)
    • (1998) Learning in Graphical Models , pp. 355-369
    • Neal, R.1    Hinton, G.2
  • 6
    • 78349238081 scopus 로고    scopus 로고
    • Expectation Truncation and the Benefits of Preselection in Training Generative Models
    • revision in review
    • Lücke, J., Eggert, J.: Expectation Truncation And the Benefits of Preselection in Training Generative Models. J. Mach Learn Res., revision in review (2010)
    • (2010) J. Mach Learn Res.
    • Lücke, J.1    Eggert, J.2
  • 7
    • 46749096794 scopus 로고    scopus 로고
    • Maximal causes for non-linear component extraction
    • Lücke, J., Sahani, M.: Maximal causes for non-linear component extraction. J. Mach. Learn. Res. 9, 1227-1267 (2008)
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1227-1267
    • Lücke, J.1    Sahani, M.2
  • 10
    • 0032492432 scopus 로고    scopus 로고
    • Independent Component Filters of Natural Images Compared with Simple Cells in Primary Visual Cortex
    • Hateren, J., Schaaf, A.: Independent Component Filters of Natural Images Compared with Simple Cells in Primary Visual Cortex. Proc. Biol. Sci. 265(1394), 359-366 (1998)
    • (1998) Proc. Biol. Sci. , vol.265 , Issue.1394 , pp. 359-366
    • Hateren, J.1    Schaaf, A.2
  • 11
    • 70449699801 scopus 로고    scopus 로고
    • Receptive Field Self-Organization in a Model of the Fine Structure in V1 Cortical Columns
    • Lücke, J.: Receptive Field Self-Organization in a Model of the Fine Structure in V1 Cortical Columns. Neural Computation (2009)
    • (2009) Neural Computation
    • Lücke, J.1
  • 12
    • 85161971766 scopus 로고    scopus 로고
    • On sparsity and overcompleteness in image models
    • Berkes, P., Turner, R., Sahani, M.: On sparsity and overcompleteness in image models. In: Proc NIPS, vol. 20 (2008)
    • (2008) Proc NIPS , vol.20
    • Berkes, P.1    Turner, R.2    Sahani, M.3
  • 13
    • 0031590130 scopus 로고    scopus 로고
    • Generative models for discovering sparse distributed representations
    • Hinton, G., Ghahramani, Z.: Generative models for discovering sparse distributed representations. Phil. Trans. R Soc. B 352(1358), 1177 (1997)
    • (1997) Phil. Trans. R Soc. B , vol.352 , Issue.1358 , pp. 1177
    • Hinton, G.1    Ghahramani, Z.2
  • 14
    • 0000852458 scopus 로고    scopus 로고
    • Development of low entropy coding in a recurrent network
    • Harpur, G., Prager, R.: Development of low entropy coding in a recurrent network. Network-Comp. Neural. 7, 277-284 (1996)
    • (1996) Network-Comp. Neural. , vol.7 , pp. 277-284
    • Harpur, G.1    Prager, R.2
  • 16
    • 38149004503 scopus 로고    scopus 로고
    • Generalized softmax networks for non-linear component extraction
    • de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. Springer, Heidelberg
    • Lücke, J., Sahani, M.: Generalized softmax networks for non-linear component extraction. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 657-667. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4668 , pp. 657-667
    • Lücke, J.1    Sahani, M.2
  • 17
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • Rehn, M., Sommer, F.T.: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. J. Comput. Neurosci. 22(2), 135-146 (2007)
    • (2007) J. Comput. Neurosci. , vol.22 , Issue.2 , pp. 135-146
    • Rehn, M.1    Sommer, F.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.