-
1
-
-
70349705656
-
A structured model of video reproduces primary visual cortical organisation
-
P. Berkes, R. E. Turner, and M. Sahani. A structured model of video reproduces primary visual cortical organisation. PLoS Computational Biology, 5 (9): el000495, 2009.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.9
-
-
Berkes, P.1
Turner, R.E.2
Sahani, M.3
-
3
-
-
33847391180
-
Learning sensory representations with intrinsic plasticity
-
N. J. Butko and J. Triesch. Learning sensory representations with intrinsic plasticity. Neurocomputing, 70(7-9):1130-1138, 2007.
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1130-1138
-
-
Butko, N.J.1
Triesch, J.2
-
4
-
-
0036707219
-
Unsupervised neural networks for the identification of minimum overcomplete basis in visual data
-
D. Charles, C. Fyfe, D. MacDonald, and J. Koetsier. Unsupervised neural networks for the identification of minimum overcomplete basis in visual data. Neurocomputing, 47(1-4):119-143, 2002.
-
(2002)
Neurocomputing
, vol.47
, Issue.1-4
, pp. 119-143
-
-
Charles, D.1
Fyfe, C.2
MacDonald, D.3
Koetsier, J.4
-
5
-
-
0028416938
-
Independent component analysis, a new concept?
-
P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, Issue.3
, pp. 287-314
-
-
Comon, P.1
-
6
-
-
0001179408
-
Competition and multiple cause models
-
P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural Computation, 7:565-579, 1995.
-
(1995)
Neural. Computation
, vol.7
, pp. 565-579
-
-
Dayan, P.1
Zemel, R.S.2
-
8
-
-
0025604930
-
Forming sparse representations by local anti-Hebbian learning
-
P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64:165-170, 1990.
-
(1990)
Biological Cybernetics
, vol.64
, pp. 165-170
-
-
Földiák, P.1
-
10
-
-
0029652445
-
The 'wake-sleep' algorithm for unsupervised neural networks
-
G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The 'wake-sleep' algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
14
-
-
4043084564
-
Tutorial on variational approximation methods
-
M. Opper and D. Saad, editors, MIT Press
-
T. Jaakkola. Tutorial on variational approximation methods. In M. Opper and D. Saad, editors, Advanced mean field methods: theory and practice. MIT Press, 2000.
-
(2000)
Advanced Mean Field Methods: Theory and Practice
-
-
Jaakkola, T.1
-
15
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
16
-
-
0344980094
-
A model of computation in neocortical architecture
-
E. Körner, M. O. Gewaltig, U. Körner, A. Richter, and T. Rodemann. A model of computation in neocortical architecture. Neural Networks, 12:989-1005, 1999.
-
(1999)
Neural. Networks
, vol.12
, pp. 989-1005
-
-
Körner, E.1
Gewaltig, M.O.2
Körner, U.3
Richter, A.4
Rodemann, T.5
-
18
-
-
0347304330
-
Selecting the k largest elements with parity tests
-
T. W. Lam and H.-F. Ting. Selecting the k largest elements with parity tests. Discrete Appl. Math., 101(1-3):187-196, 2000.
-
(2000)
Discrete Appl. Math.
, vol.101
, Issue.1-3
, pp. 187-196
-
-
Lam, T.W.1
Ting, H.-F.2
-
19
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-91, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
21
-
-
0042565834
-
Hierarchical Bayesian inference in the visual cortex
-
T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis, 20(7):1434-1448, 2003.
-
(2003)
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
, vol.20
, Issue.7
, pp. 1434-1448
-
-
Lee, T.S.1
Mumford, D.2
-
22
-
-
9144241266
-
Hierarchical self-organization of minicolumnar receptive fields
-
DOI 10.1016/j.neunet.2004.07.008, PII S0893608004001674, New Developments in Self-Organizing Systems
-
J. Lücke. Hierarchical self-organization of minicolumnar receptive fields. Neural Networks, 17/8-9:1377-1389, 2004. (Pubitemid 39539548)
-
(2004)
Neural Networks
, vol.17
, Issue.8-9
, pp. 1377-1389
-
-
Lucke, J.1
-
24
-
-
46749096794
-
Maximal causes for non-linear component extraction
-
J. Lücke and M. Sahani. Maximal causes for non-linear component extraction. Journal of Machine Learning Research, 9:1227-1267, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1227-1267
-
-
Lücke, J.1
Sahani, M.2
-
25
-
-
10744227912
-
Rapid processing and unsupervised learning in a model of the cortical macrocolumn
-
J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural Computation, 16:501-533, 2004.
-
(2004)
Neural. Computation
, vol.16
, pp. 501-533
-
-
Lücke, J.1
Von Malsburg, C.D.2
-
26
-
-
84858716136
-
Occlusive components analysis
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
J. Lücke, R. Turner, M. Sahani, and M. Henniges. Occlusive components analysis. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1069-1077, 2009.
-
(2009)
Advances in Neural. Information Processing Systems
, vol.22
, pp. 1069-1077
-
-
Lücke, J.1
Turner, R.2
Sahani, M.3
Henniges, M.4
-
28
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1
-
T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI '01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pages 362-369, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1.
-
(2001)
UAI '01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence
, pp. 362-369
-
-
Minka, T.P.1
-
29
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan, editor, Kluwer, y1998
-
R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, y1998.
-
Learning in Graphical Models
-
-
Neal, R.1
Hinton, G.2
-
31
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
32
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 211(11):1019-1025, 1999.
-
(1999)
Nature Neuroscience
, vol.211
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
34
-
-
0003040479
-
A multiple cause mixture model for unsupervised learning
-
E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation, 7:51-71, 1995.
-
(1995)
Neural. Computation
, vol.7
, pp. 51-71
-
-
Saund, E.1
-
35
-
-
33646697510
-
Learning image components for object recognition
-
M. W. Spratling. Learning image components for object recognition. Journal of Machine Learning Research, 7:793-815, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 793-815
-
-
Spratling, M.W.1
-
36
-
-
8344290493
-
Energy-based models for sparse overcomplete representations
-
Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse overcomplete representations. The Journal of Machine Learning Research, 4 (7), 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.4
, Issue.7
-
-
Teh, Y.W.1
Welling, M.2
Osindero, S.3
Hinton, G.E.4
-
37
-
-
0032029288
-
Deterministic annealing EM algorithm
-
N. Ueda and R. Nakano. Deterministic annealing EM algorithm. Neural Networks, 11(2):271-282, 1998.
-
(1998)
Neural. Networks
, vol.11
, Issue.2
, pp. 271-282
-
-
Ueda, N.1
Nakano, R.2
-
38
-
-
0035380719
-
Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex
-
R. van Rullen and S. J. Thorpe. Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Computation, 13(6):1255-1283, 2001.
-
(2001)
Neural. Computation
, vol.13
, Issue.6
, pp. 1255-1283
-
-
Van Rullen, R.1
Thorpe, S.J.2
-
39
-
-
68349132127
-
Combining feature-and correspondence-based methods for visual object recognition
-
G. Westphal and R. P. Würtz. Combining feature- and correspondence-based methods for visual object recognition. Neural Computation, 21(7):1952-1989, 2009.
-
(2009)
Neural. Computation
, vol.21
, Issue.7
, pp. 1952-1989
-
-
Westphal, G.1
Würtz, R.P.2
-
40
-
-
33746220445
-
Vision as Bayesian inference: Analysis by synthesis?
-
A. Yuille and D. Kersten. Vision as Bayesian inference: analysis by synthesis? Trends in Cognitive Sciences, 10(7):301-308, 2006.
-
(2006)
Trends in Cognitive Sciences
, vol.10
, Issue.7
, pp. 301-308
-
-
Yuille, A.1
Kersten, D.2
|