메뉴 건너뛰기




Volumn , Issue , 2006, Pages 536-543

A non-parametric Bayesian method for inferring hidden causes

Author keywords

[No Author keywords available]

Indexed keywords

FINITE NUMBER; GIBBS SAMPLERS; MEDICAL DATASET; NON-PARAMETRIC BAYESIAN; NONPARAMETRIC APPROACHES; REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO; SIMULATED DATA; STRUCTURE-LEARNING;

EID: 80053160972     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (65)

References (13)
  • 1
    • 0000498409 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • N. Friedman and D. Koller, "Being Bayesian about network structure," UAI 16, 2000.
    • (2000) UAI , vol.16
    • Friedman, N.1    Koller, D.2
  • 2
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. I. Jordan (ed.). MIT Press
    • D. Heckerman, "A tutorial on learning with Bayesian networks," in Learning in Graphical Models, M. I. Jordan (ed.). MIT Press, 1998.
    • (1998) Learning in Graphical Models
    • Heckerman, D.1
  • 3
    • 0026056182 scopus 로고
    • Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base I. The probabilistic model and inference algorithms
    • M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper, "Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base I. the probabilistic model and inference algorithms," Methods of Information in Medicine, vol. 30, pp. 241-255, 1991.
    • (1991) Methods of Information in Medicine , vol.30 , pp. 241-255
    • Shwe, M.1    Middleton, B.2    Heckerman, D.3    Henrion, M.4    Horvitz, E.5    Lehmann, H.6    Cooper, G.7
  • 4
    • 33750192333 scopus 로고    scopus 로고
    • The information bottleneck expectation maximization algorithm
    • G. Elidan and N. Friedman, "The information bottleneck expectation maximization algorithm," UAI 19, 2003.
    • (2003) UAI , vol.19
    • Elidan, G.1    Friedman, N.2
  • 5
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P. Green, "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination," Biometrika, pp. 711-732, 1995.
    • (1995) Biometrika , pp. 711-732
    • Green, P.1
  • 6
    • 84898930544 scopus 로고    scopus 로고
    • Similarity and discrimination in classical conditioning: A latent variable account
    • A. C. Courville, N. D. Daw, and D. S. Touretzky, "Similarity and discrimination in classical conditioning: A latent variable account," NIPS 17, 2005.
    • (2005) NIPS , vol.17
    • Courville, A.C.1    Daw, N.D.2    Touretzky, D.S.3
  • 7
    • 80053189239 scopus 로고    scopus 로고
    • Bayesian model learning in human visual perception
    • G. Orban, J. Fiser, R. N. Aslin, and M. Lengyel, "Bayesian model learning in human visual perception," NIPS 18, 2006.
    • (2006) NIPS , vol.18
    • Orban, G.1    Fiser, J.2    Aslin, R.N.3    Lengyel, M.4
  • 8
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to Bayesian nonparametric problems
    • C. Antoniak, "Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems," The Annals of Statistics, vol. 2, pp. 1152-1174, 1974.
    • (1974) The Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 9
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for dirichlet process mixture models
    • R. M. Neal, "Markov chain sampling methods for Dirichlet process mixture models," Journal of Computational and Graphical Statistics, vol. 9, pp. 249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 10
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • C. Rasmussen, "The infinite Gaussian mixture model," NIPS 12, 2000.
    • (2000) NIPS , vol.12
    • Rasmussen, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.