메뉴 건너뛰기




Volumn 2015-May, Issue , 2015, Pages 1871-1886

SMiLer: A semi-lazy time series prediction system for sensors

Author keywords

DTW; Gaussian Process; GPU; Predictive analysis; Semi lazy learning; Sensors; Time series

Indexed keywords

EFFICIENCY; FORECASTING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); QUERY PROCESSING; SENSORS; TIME SERIES; UNCERTAINTY ANALYSIS;

EID: 84957544261     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2723372.2749429     Document Type: Conference Paper
Times cited : (42)

References (78)
  • 1
    • 84957536661 scopus 로고    scopus 로고
    • Genie and lamp. http://www.comp. nus.edu.sg/~atung/gl/, 2014.
    • (2014)
    • Genie and lamp1
  • 2
    • 84861452391 scopus 로고    scopus 로고
    • A novel weighted ensemble technique for time series forecasting
    • R. Adhikari and R. Agrawal. A novel weighted ensemble technique for time series forecasting. In PAKDD, pages 38-49, 2012.
    • (2012) PAKDD , pp. 38-49
    • Adhikari, R.1    Agrawal, R.2
  • 4
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175-185, 1992.
    • (1992) The American Statistician , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 5
    • 43349089096 scopus 로고    scopus 로고
    • The ts-tree: Efficient time series search and retrieval
    • I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient time series search and retrieval. In EDBT, pages 252-263, 2008.
    • (2008) EDBT , pp. 252-263
    • Assent, I.1    Krieger, R.2    Afschari, F.3    Seidl, T.4
  • 8
    • 84893418073 scopus 로고    scopus 로고
    • Referential knn regression for financial time series forecasting
    • T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, and D. Inoue. Referential knn regression for financial time series forecasting. In ICONIP, pages 601-608, 2013.
    • (2013) ICONIP , pp. 601-608
    • Ban, T.1    Zhang, R.2    Pang, S.3    Sarrafzadeh, A.4    Inoue, D.5
  • 9
    • 79952196502 scopus 로고    scopus 로고
    • Projected sequential Gaussian processes: A c++ tool for interpolation of large datasets with heterogeneous noise
    • R. Barillec, B. Ingram, D. Cornford, and L. Csató. Projected sequential gaussian processes: A c++ tool for interpolation of large datasets with heterogeneous noise. Computers & Geosciences, 37(3):295-309, 2011.
    • (2011) Computers & Geosciences , vol.37 , Issue.3 , pp. 295-309
    • Barillec, R.1    Ingram, B.2    Cornford, D.3    Csató, L.4
  • 12
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • E. Blanzieri and F. Melgani. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Transactions on Geoscience and Remote Sensing, 46(6):1804-1811, 2008.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 13
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307-327, 1986.
    • (1986) Journal of Econometrics , vol.31 , Issue.3 , pp. 307-327
    • Bollerslev, T.1
  • 14
    • 0013309537 scopus 로고    scopus 로고
    • On-line learning and stochastic approximations
    • Cambridge University Press
    • L. Bottou. On-line learning and stochastic approximations. In On-line learning in neural networks, pages 9-42. Cambridge University Press, 1999.
    • (1999) On-line Learning in Neural Networks , pp. 9-42
    • Bottou, L.1
  • 16
    • 34247466026 scopus 로고    scopus 로고
    • Dependent Gaussian processes
    • P. Boyle and M. Frean. Dependent gaussian processes. In NIPS, pages 217-224, 2004.
    • (2004) NIPS , pp. 217-224
    • Boyle, P.1    Frean, M.2
  • 18
    • 0037818784 scopus 로고    scopus 로고
    • F4: Large-scale automated forecasting using fractals
    • D. Chakrabarti and C. Faloutsos. F4: large-scale automated forecasting using fractals. In CIKM, pages 2-9, 2002.
    • (2002) CIKM , pp. 2-9
    • Chakrabarti, D.1    Faloutsos, C.2
  • 19
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM TIST, 2(3):27, 2011.
    • (2011) ACM TIST , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 20
    • 85072842530 scopus 로고    scopus 로고
    • Augmented functional time series representation and forecasting with Gaussian processes
    • N. Chapados and Y. Bengio. Augmented functional time series representation and forecasting with gaussian processes. In NIPS, pages 457-464, 2007.
    • (2007) NIPS , pp. 457-464
    • Chapados, N.1    Bengio, Y.2
  • 21
    • 85135872226 scopus 로고    scopus 로고
    • On the marriage of lp-norms and edit distance
    • L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In VLDB, pages 792-803, 2004.
    • (2004) VLDB , pp. 792-803
    • Chen, L.1    Ng, R.2
  • 22
    • 29844444110 scopus 로고    scopus 로고
    • Robust and fast similarity search for moving object trajectories
    • L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajectories. In SIGMOD, pages 491-502, 2005.
    • (2005) SIGMOD , pp. 491-502
    • Chen, L.1    Özsu, M.T.2    Oria, V.3
  • 23
    • 61849183105 scopus 로고    scopus 로고
    • Bagging for Gaussian process regression
    • T. Chen and J. Ren. Bagging for gaussian process regression. Neurocomputing, 72(7):1605-1610, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7 , pp. 1605-1610
    • Chen, T.1    Ren, J.2
  • 24
    • 34548788470 scopus 로고    scopus 로고
    • Spade: On shape-based pattern detection in streaming time series
    • Y. Chen, M. Nascimento, B. Ooi, and A. Tung. Spade: On shape-based pattern detection in streaming time series. In ICDE, pages 786-795, 2007.
    • (2007) ICDE , pp. 786-795
    • Chen, Y.1    Nascimento, M.2    Ooi, B.3    Tung, A.4
  • 25
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • L. Csató and M. Opper. Sparse on-line gaussian processes. Neural computation, 14(3):641-668, 2002.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 27
    • 80053435622 scopus 로고    scopus 로고
    • Fast global alignment kernels
    • M. Cuturi. Fast global alignment kernels. In ICML, pages 929-936, 2011.
    • (2011) ICML , pp. 929-936
    • Cuturi, M.1
  • 30
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB, 1(2):1542-1552, 2008.
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 31
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination
    • R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom ination. Econometrica, pages 987-1007, 1982.
    • (1982) Econometrica , pp. 987-1007
    • Engle, R.F.1
  • 32
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases
    • C. Faloutsos and R. T. Snodgrass. Fast subsequence matching in time-series databases. In SIGMOD, pages 419-429, 1994.
    • (1994) SIGMOD , pp. 419-429
    • Faloutsos, C.1    Snodgrass, R.T.2
  • 34
    • 11144332281 scopus 로고    scopus 로고
    • Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting
    • A. Girard, C. E. Rasmussen, J. Quinonero-Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting. In NIPS, pages 545-552, 2002.
    • (2002) NIPS , pp. 545-552
    • Girard, A.1    Rasmussen, C.E.2    Quinonero-Candela, J.3    Murray-Smith, R.4
  • 35
    • 34548803146 scopus 로고    scopus 로고
    • Time series forecasting using multiple Gaussian process prior model
    • T. Hachino and V. Kadirkamanathan. Time series forecasting using multiple gaussian process prior model. In CIDM, pages 604-609, 2007.
    • (2007) CIDM , pp. 604-609
    • Hachino, T.1    Kadirkamanathan, V.2
  • 36
    • 79959918495 scopus 로고    scopus 로고
    • A new approach for processing ranked subsequence matching based on ranked union
    • W.-S. Han, J. Lee, Y.-S. Moon, S.-W. Hwang, and H. Yu. A new approach for processing ranked subsequence matching based on ranked union. In SIGMOD, pages 457-468, 2011.
    • (2011) SIGMOD , pp. 457-468
    • Han, W.-S.1    Lee, J.2    Moon, Y.-S.3    Hwang, S.-W.4    Yu, H.5
  • 37
    • 85011092633 scopus 로고    scopus 로고
    • Ranked subsequence matching in time-series databases
    • W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked subsequence matching in time-series databases. In VLDB, pages 423-434, 2007.
    • (2007) VLDB , pp. 423-434
    • Han, W.-S.1    Lee, J.2    Moon, Y.-S.3    Jiang, H.4
  • 38
    • 0742324096 scopus 로고    scopus 로고
    • Forecasting seasonals and trends by exponentially weighted moving averages
    • C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1):5-10, 2004.
    • (2004) International Journal of Forecasting , vol.20 , Issue.1 , pp. 5-10
    • Holt, C.C.1
  • 39
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for r
    • R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: The forecast package for r. Journal of Statistical Software, 27(103), 2008.
    • (2008) Journal of Statistical Software , vol.27 , Issue.103
    • Hyndman, R.J.1    Khandakar, Y.2
  • 40
    • 77952543580 scopus 로고    scopus 로고
    • Hybrid svmr-GPR for modeling of chaotic time series systems with noise and outliers
    • J.-T. Jeng, C.-C. Chuang, and C.-W. Tao. Hybrid svmr-gpr for modeling of chaotic time series systems with noise and outliers. Neurocomputing, 73(10):1686-1693, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.10 , pp. 1686-1693
    • Jeng, J.-T.1    Chuang, C.-C.2    Tao, C.-W.3
  • 41
    • 0242497349 scopus 로고    scopus 로고
    • Exact indexing of dynamic time warping
    • E. Keogh. Exact indexing of dynamic time warping. In VLDB, pages 406-417, 2002.
    • (2002) VLDB , pp. 406-417
    • Keogh, E.1
  • 42
    • 33750297043 scopus 로고    scopus 로고
    • A scalable distributed stream mining system for highway traffic data
    • Y. Liu, A. Choudhary, J. Zhou, and A. Khokhar. A scalable distributed stream mining system for highway traffic data. In PKDD, pages 309-321. 2006.
    • (2006) PKDD , pp. 309-321
    • Liu, Y.1    Choudhary, A.2    Zhou, J.3    Khokhar, A.4
  • 43
    • 85007252135 scopus 로고    scopus 로고
    • Parallel Gaussian process regression for big data: Low-rank representation meets markov approximation
    • K. H. Low, J. Yu, J. Chen, and P. Jaillet. Parallel gaussian process regression for big data: low-rank representation meets markov approximation. In AAAI, 2015.
    • (2015) AAAI
    • Low, K.H.1    Yu, J.2    Chen, J.3    Jaillet, P.4
  • 45
    • 0035020716 scopus 로고    scopus 로고
    • Duality-based subsequence matching in time-series databases
    • Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based subsequence matching in time-series databases. In ICDE, pages 263-272, 2001.
    • (2001) ICDE , pp. 263-272
    • Moon, Y.-S.1    Whang, K.-Y.2    Loh, W.-K.3
  • 48
    • 70449580824 scopus 로고    scopus 로고
    • Model learning with local Gaussian process regression
    • D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learning with local gaussian process regression. Advanced Robotics, 23(15):2015-2034, 2009.
    • (2009) Advanced Robotics , vol.23 , Issue.15 , pp. 2015-2034
    • Nguyen-Tuong, D.1    Seeger, M.2    Peters, J.3
  • 50
    • 33745974959 scopus 로고    scopus 로고
    • Nonstationary covariance functions for Gaussian process regression
    • C. J. Paciorek and M. J. Schervish. Nonstationary covariance functions for gaussian process regression. In NIPS, pages 273-280, 2003.
    • (2003) NIPS , pp. 273-280
    • Paciorek, C.J.1    Schervish, M.J.2
  • 51
    • 79960147021 scopus 로고    scopus 로고
    • Domain decomposition approach for fast Gaussian process regression of large spatial data sets
    • C. Park, J. Z. Huang, and Y. Ding. Domain decomposition approach for fast gaussian process regression of large spatial data sets. JMLR, 12:1697-1728, 2011.
    • (2011) JMLR , vol.12 , pp. 1697-1728
    • Park, C.1    Huang, J.Z.2    Ding, Y.3
  • 57
    • 34250727441 scopus 로고    scopus 로고
    • Three myths about dynamic time warping data mining
    • C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data mining. In SDM, pages 506-510, 2005.
    • (2005) SDM , pp. 506-510
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 58
    • 84893603400 scopus 로고    scopus 로고
    • Time series forecasting using distribution enhanced linear regression
    • G. Ristanoski, W. Liu, and J. Bailey. Time series forecasting using distribution enhanced linear regression. In PAKDD, pages 484-495. 2013.
    • (2013) PAKDD , pp. 484-495
    • Ristanoski, G.1    Liu, W.2    Bailey, J.3
  • 60
    • 79951752243 scopus 로고    scopus 로고
    • Accelerating dynamic time warping subsequence search with GPUs and FPGAS
    • D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. Accelerating dynamic time warping subsequence search with gpus and fpgas. In ICDM, pages 1001-1006, 2010.
    • (2010) ICDM , pp. 1001-1006
    • Sart, D.1    Mueen, A.2    Najjar, W.3    Keogh, E.4    Niennattrakul, V.5
  • 61
    • 77954672890 scopus 로고    scopus 로고
    • Fast and scalable local kernel machines
    • N. Segata and E. Blanzieri. Fast and scalable local kernel machines. JMLR, 11:1883-1926, 2010.
    • (2010) JMLR , vol.11 , pp. 1883-1926
    • Segata, N.1    Blanzieri, E.2
  • 64
    • 0035344742 scopus 로고    scopus 로고
    • Predictive approaches for choosing hyperparameters in Gaussian processes
    • S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in gaussian processes. Neural Computation, 13(5):1103-1118, 2001.
    • (2001) Neural Computation , vol.13 , Issue.5 , pp. 1103-1118
    • Sundararajan, S.1    Keerthi, S.S.2
  • 65
    • 84860609370 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse Gaussian processes
    • M. K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In AISTATS, pages 567-574, 2009.
    • (2009) AISTATS , pp. 567-574
    • Titsias, M.K.1
  • 66
    • 0036211177 scopus 로고    scopus 로고
    • Discovering similar multidimensional trajectories
    • M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories. In ICDE, pages 673-684, 2002.
    • (2002) ICDE , pp. 673-684
    • Vlachos, M.1    Kollios, G.2    Gunopulos, D.3
  • 67
    • 84896063608 scopus 로고    scopus 로고
    • A knn based kalman filter Gaussian process regression
    • Y. Wang and B. Chaib-Draa. A knn based kalman filter gaussian process regression. In IJCAI, pages 1771-1777, 2013.
    • (2013) IJCAI , pp. 1771-1777
    • Wang, Y.1    Chaib-Draa, B.2
  • 68
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1(4):339-356, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.J.1
  • 69
    • 84899010839 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • C. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In NIPS, pages 682-688, 2001.
    • (2001) NIPS , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 70
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • C. K. Williams and C. E. Rasmussen. Gaussian processes for regression. In NIPS, pages 514-520, 1996.
    • (1996) NIPS , pp. 514-520
    • Williams, C.K.1    Rasmussen, C.E.2
  • 71
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • P. R. Winters. Forecasting sales by exponentially weighted moving averages. Management Science, 6(3):324-342, 1960.
    • (1960) Management Science , vol.6 , Issue.3 , pp. 324-342
    • Winters, P.R.1
  • 72
    • 70449410017 scopus 로고    scopus 로고
    • Gaussian process for long-term time-series forecasting
    • W. Yan, H. Qiu, and Y. Xue. Gaussian process for long-term time-series forecasting. In IJCNN, pages 3420-3427, 2009.
    • (2009) IJCNN , pp. 3420-3427
    • Yan, W.1    Qiu, H.2    Xue, Y.3
  • 73
    • 66549108289 scopus 로고    scopus 로고
    • Consistency and localizability
    • A. Zakai and Y. Ritov. Consistency and localizability. JMLR, 10:827-856, 2009.
    • (2009) JMLR , vol.10 , pp. 827-856
    • Zakai, A.1    Ritov, Y.2
  • 74
    • 33845566162 scopus 로고    scopus 로고
    • SVM-knn: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In CVPR, pages 2126-2136, 2006.
    • (2006) CVPR , pp. 2126-2136
    • Zhang, H.1    Berg, A.C.2    Maire, M.3    Malik, J.4
  • 75
    • 33749243068 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, pages 116-123, 2004.
    • (2004) ICML , pp. 116-123
    • Zhang, T.1
  • 76
    • 84891095458 scopus 로고    scopus 로고
    • R2-d2: A system to support probabilistic path prediction in dynamic environments via "semi-lazy" learning
    • J. Zhou, A. K. Tung, W. Wu, and W. S. Ng. R2-d2: a system to support probabilistic path prediction in dynamic environments via "semi-lazy" learning. PVLDB, 6(12):1366-1369, 2013.
    • (2013) PVLDB , vol.6 , Issue.12 , pp. 1366-1369
    • Zhou, J.1    Tung, A.K.2    Wu, W.3    Ng, W.S.4
  • 77
    • 85008648361 scopus 로고    scopus 로고
    • A "semi-lazy" approach to probabilistic path prediction in dynamic environments
    • J. Zhou, A. K. Tung, W. Wu, and W. S. Ng. A "semi-lazy" approach to probabilistic path prediction in dynamic environments. In KDD, pages 748-756, 2013.
    • (2013) KDD , pp. 748-756
    • Zhou, J.1    Tung, A.K.2    Wu, W.3    Ng, W.S.4
  • 78
    • 1142279463 scopus 로고    scopus 로고
    • Warping indexes with envelope transforms for query by humming
    • Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by humming. In SIGMOD, pages 181-192, 2003.
    • (2003) SIGMOD , pp. 181-192
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.