-
1
-
-
84957536661
-
-
Genie and lamp. http://www.comp. nus.edu.sg/~atung/gl/, 2014.
-
(2014)
-
-
Genie and lamp1
-
2
-
-
84861452391
-
A novel weighted ensemble technique for time series forecasting
-
R. Adhikari and R. Agrawal. A novel weighted ensemble technique for time series forecasting. In PAKDD, pages 38-49, 2012.
-
(2012)
PAKDD
, pp. 38-49
-
-
Adhikari, R.1
Agrawal, R.2
-
3
-
-
84922676879
-
Fast k-selection algorithms for graphics processing units
-
T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach. Fast k-selection algorithms for graphics processing units. Journal of Experimental Algorithmics, 17:4-2, 2012.
-
(2012)
Journal of Experimental Algorithmics
, vol.17
, pp. 4-12
-
-
Alabi, T.1
Blanchard, J.D.2
Gordon, B.3
Steinbach, R.4
-
4
-
-
0000581356
-
An introduction to kernel and nearest-neighbor nonparametric regression
-
N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175-185, 1992.
-
(1992)
The American Statistician
, vol.46
, Issue.3
, pp. 175-185
-
-
Altman, N.S.1
-
5
-
-
43349089096
-
The ts-tree: Efficient time series search and retrieval
-
I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient time series search and retrieval. In EDBT, pages 252-263, 2008.
-
(2008)
EDBT
, pp. 252-263
-
-
Assent, I.1
Krieger, R.2
Afschari, F.3
Seidl, T.4
-
6
-
-
57149141135
-
Approximate embedding-based subsequence matching of time series
-
V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Gunopulos. Approximate embedding-based subsequence matching of time series. In SIGMOD, pages 365-378, 2008.
-
(2008)
SIGMOD
, pp. 365-378
-
-
Athitsos, V.1
Papapetrou, P.2
Potamias, M.3
Kollios, G.4
Gunopulos, D.5
-
8
-
-
84893418073
-
Referential knn regression for financial time series forecasting
-
T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, and D. Inoue. Referential knn regression for financial time series forecasting. In ICONIP, pages 601-608, 2013.
-
(2013)
ICONIP
, pp. 601-608
-
-
Ban, T.1
Zhang, R.2
Pang, S.3
Sarrafzadeh, A.4
Inoue, D.5
-
9
-
-
79952196502
-
Projected sequential Gaussian processes: A c++ tool for interpolation of large datasets with heterogeneous noise
-
R. Barillec, B. Ingram, D. Cornford, and L. Csató. Projected sequential gaussian processes: A c++ tool for interpolation of large datasets with heterogeneous noise. Computers & Geosciences, 37(3):295-309, 2011.
-
(2011)
Computers & Geosciences
, vol.37
, Issue.3
, pp. 295-309
-
-
Barillec, R.1
Ingram, B.2
Cornford, D.3
Csató, L.4
-
11
-
-
77951194179
-
Non-parametric sequential prediction of time series
-
G. Biau, K. Bleakley, L. Györfi, and G. Ottucsák. Non-parametric sequential prediction of time series. Journal of Nonparametric Statistics, 22(3):297-317, 2010.
-
(2010)
Journal of Nonparametric Statistics
, vol.22
, Issue.3
, pp. 297-317
-
-
Biau, G.1
Bleakley, K.2
Györfi, L.3
Ottucsák, G.4
-
12
-
-
44049098082
-
Nearest neighbor classification of remote sensing images with the maximal margin principle
-
E. Blanzieri and F. Melgani. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Transactions on Geoscience and Remote Sensing, 46(6):1804-1811, 2008.
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing
, vol.46
, Issue.6
, pp. 1804-1811
-
-
Blanzieri, E.1
Melgani, F.2
-
13
-
-
42449156579
-
Generalized autoregressive conditional heteroskedasticity
-
T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307-327, 1986.
-
(1986)
Journal of Econometrics
, vol.31
, Issue.3
, pp. 307-327
-
-
Bollerslev, T.1
-
14
-
-
0013309537
-
On-line learning and stochastic approximations
-
Cambridge University Press
-
L. Bottou. On-line learning and stochastic approximations. In On-line learning in neural networks, pages 9-42. Cambridge University Press, 1999.
-
(1999)
On-line Learning in Neural Networks
, pp. 9-42
-
-
Bottou, L.1
-
16
-
-
34247466026
-
Dependent Gaussian processes
-
P. Boyle and M. Frean. Dependent gaussian processes. In NIPS, pages 217-224, 2004.
-
(2004)
NIPS
, pp. 217-224
-
-
Boyle, P.1
Frean, M.2
-
18
-
-
0037818784
-
F4: Large-scale automated forecasting using fractals
-
D. Chakrabarti and C. Faloutsos. F4: large-scale automated forecasting using fractals. In CIKM, pages 2-9, 2002.
-
(2002)
CIKM
, pp. 2-9
-
-
Chakrabarti, D.1
Faloutsos, C.2
-
19
-
-
79955702502
-
Libsvm: A library for support vector machines
-
C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM TIST, 2(3):27, 2011.
-
(2011)
ACM TIST
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
20
-
-
85072842530
-
Augmented functional time series representation and forecasting with Gaussian processes
-
N. Chapados and Y. Bengio. Augmented functional time series representation and forecasting with gaussian processes. In NIPS, pages 457-464, 2007.
-
(2007)
NIPS
, pp. 457-464
-
-
Chapados, N.1
Bengio, Y.2
-
21
-
-
85135872226
-
On the marriage of lp-norms and edit distance
-
L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In VLDB, pages 792-803, 2004.
-
(2004)
VLDB
, pp. 792-803
-
-
Chen, L.1
Ng, R.2
-
22
-
-
29844444110
-
Robust and fast similarity search for moving object trajectories
-
L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajectories. In SIGMOD, pages 491-502, 2005.
-
(2005)
SIGMOD
, pp. 491-502
-
-
Chen, L.1
Özsu, M.T.2
Oria, V.3
-
23
-
-
61849183105
-
Bagging for Gaussian process regression
-
T. Chen and J. Ren. Bagging for gaussian process regression. Neurocomputing, 72(7):1605-1610, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.7
, pp. 1605-1610
-
-
Chen, T.1
Ren, J.2
-
24
-
-
34548788470
-
Spade: On shape-based pattern detection in streaming time series
-
Y. Chen, M. Nascimento, B. Ooi, and A. Tung. Spade: On shape-based pattern detection in streaming time series. In ICDE, pages 786-795, 2007.
-
(2007)
ICDE
, pp. 786-795
-
-
Chen, Y.1
Nascimento, M.2
Ooi, B.3
Tung, A.4
-
25
-
-
0038891993
-
Sparse on-line Gaussian processes
-
L. Csató and M. Opper. Sparse on-line gaussian processes. Neural computation, 14(3):641-668, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
27
-
-
80053435622
-
Fast global alignment kernels
-
M. Cuturi. Fast global alignment kernels. In ICML, pages 929-936, 2011.
-
(2011)
ICML
, pp. 929-936
-
-
Cuturi, M.1
-
30
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB, 1(2):1542-1552, 2008.
-
(2008)
PVLDB
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
31
-
-
0000051984
-
Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination
-
R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom ination. Econometrica, pages 987-1007, 1982.
-
(1982)
Econometrica
, pp. 987-1007
-
-
Engle, R.F.1
-
32
-
-
0028447023
-
Fast subsequence matching in time-series databases
-
C. Faloutsos and R. T. Snodgrass. Fast subsequence matching in time-series databases. In SIGMOD, pages 419-429, 1994.
-
(1994)
SIGMOD
, pp. 419-429
-
-
Faloutsos, C.1
Snodgrass, R.T.2
-
34
-
-
11144332281
-
Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting
-
A. Girard, C. E. Rasmussen, J. Quinonero-Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting. In NIPS, pages 545-552, 2002.
-
(2002)
NIPS
, pp. 545-552
-
-
Girard, A.1
Rasmussen, C.E.2
Quinonero-Candela, J.3
Murray-Smith, R.4
-
35
-
-
34548803146
-
Time series forecasting using multiple Gaussian process prior model
-
T. Hachino and V. Kadirkamanathan. Time series forecasting using multiple gaussian process prior model. In CIDM, pages 604-609, 2007.
-
(2007)
CIDM
, pp. 604-609
-
-
Hachino, T.1
Kadirkamanathan, V.2
-
36
-
-
79959918495
-
A new approach for processing ranked subsequence matching based on ranked union
-
W.-S. Han, J. Lee, Y.-S. Moon, S.-W. Hwang, and H. Yu. A new approach for processing ranked subsequence matching based on ranked union. In SIGMOD, pages 457-468, 2011.
-
(2011)
SIGMOD
, pp. 457-468
-
-
Han, W.-S.1
Lee, J.2
Moon, Y.-S.3
Hwang, S.-W.4
Yu, H.5
-
37
-
-
85011092633
-
Ranked subsequence matching in time-series databases
-
W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked subsequence matching in time-series databases. In VLDB, pages 423-434, 2007.
-
(2007)
VLDB
, pp. 423-434
-
-
Han, W.-S.1
Lee, J.2
Moon, Y.-S.3
Jiang, H.4
-
38
-
-
0742324096
-
Forecasting seasonals and trends by exponentially weighted moving averages
-
C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1):5-10, 2004.
-
(2004)
International Journal of Forecasting
, vol.20
, Issue.1
, pp. 5-10
-
-
Holt, C.C.1
-
39
-
-
48749112805
-
Automatic time series forecasting: The forecast package for r
-
R. J. Hyndman and Y. Khandakar. Automatic time series forecasting: The forecast package for r. Journal of Statistical Software, 27(103), 2008.
-
(2008)
Journal of Statistical Software
, vol.27
, Issue.103
-
-
Hyndman, R.J.1
Khandakar, Y.2
-
40
-
-
77952543580
-
Hybrid svmr-GPR for modeling of chaotic time series systems with noise and outliers
-
J.-T. Jeng, C.-C. Chuang, and C.-W. Tao. Hybrid svmr-gpr for modeling of chaotic time series systems with noise and outliers. Neurocomputing, 73(10):1686-1693, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.10
, pp. 1686-1693
-
-
Jeng, J.-T.1
Chuang, C.-C.2
Tao, C.-W.3
-
41
-
-
0242497349
-
Exact indexing of dynamic time warping
-
E. Keogh. Exact indexing of dynamic time warping. In VLDB, pages 406-417, 2002.
-
(2002)
VLDB
, pp. 406-417
-
-
Keogh, E.1
-
42
-
-
33750297043
-
A scalable distributed stream mining system for highway traffic data
-
Y. Liu, A. Choudhary, J. Zhou, and A. Khokhar. A scalable distributed stream mining system for highway traffic data. In PKDD, pages 309-321. 2006.
-
(2006)
PKDD
, pp. 309-321
-
-
Liu, Y.1
Choudhary, A.2
Zhou, J.3
Khokhar, A.4
-
43
-
-
85007252135
-
Parallel Gaussian process regression for big data: Low-rank representation meets markov approximation
-
K. H. Low, J. Yu, J. Chen, and P. Jaillet. Parallel gaussian process regression for big data: low-rank representation meets markov approximation. In AAAI, 2015.
-
(2015)
AAAI
-
-
Low, K.H.1
Yu, J.2
Chen, J.3
Jaillet, P.4
-
45
-
-
0035020716
-
Duality-based subsequence matching in time-series databases
-
Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based subsequence matching in time-series databases. In ICDE, pages 263-272, 2001.
-
(2001)
ICDE
, pp. 263-272
-
-
Moon, Y.-S.1
Whang, K.-Y.2
Loh, W.-K.3
-
46
-
-
84956628443
-
Predicting time series with support vector machines
-
K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting time series with support vector machines. In ICANN, pages 999-1004, 1997.
-
(1997)
ICANN
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.J.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
47
-
-
0003611509
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.
-
(1996)
Bayesian Learning for Neural Networks
-
-
Neal, R.M.1
-
48
-
-
70449580824
-
Model learning with local Gaussian process regression
-
D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learning with local gaussian process regression. Advanced Robotics, 23(15):2015-2034, 2009.
-
(2009)
Advanced Robotics
, vol.23
, Issue.15
, pp. 2015-2034
-
-
Nguyen-Tuong, D.1
Seeger, M.2
Peters, J.3
-
50
-
-
33745974959
-
Nonstationary covariance functions for Gaussian process regression
-
C. J. Paciorek and M. J. Schervish. Nonstationary covariance functions for gaussian process regression. In NIPS, pages 273-280, 2003.
-
(2003)
NIPS
, pp. 273-280
-
-
Paciorek, C.J.1
Schervish, M.J.2
-
51
-
-
79960147021
-
Domain decomposition approach for fast Gaussian process regression of large spatial data sets
-
C. Park, J. Z. Huang, and Y. Ding. Domain decomposition approach for fast gaussian process regression of large spatial data sets. JMLR, 12:1697-1728, 2011.
-
(2011)
JMLR
, vol.12
, pp. 1697-1728
-
-
Park, C.1
Huang, J.Z.2
Ding, Y.3
-
52
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. JMLR, 12:2825-2830, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
54
-
-
84866037385
-
Searching and mining trillions of time series subsequences under dynamic time warping
-
T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions of time series subsequences under dynamic time warping. In KDD, pages 262-270, 2012.
-
(2012)
KDD
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
Keogh, E.8
-
57
-
-
34250727441
-
Three myths about dynamic time warping data mining
-
C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data mining. In SDM, pages 506-510, 2005.
-
(2005)
SDM
, pp. 506-510
-
-
Ratanamahatana, C.A.1
Keogh, E.2
-
58
-
-
84893603400
-
Time series forecasting using distribution enhanced linear regression
-
G. Ristanoski, W. Liu, and J. Bailey. Time series forecasting using distribution enhanced linear regression. In PAKDD, pages 484-495. 2013.
-
(2013)
PAKDD
, pp. 484-495
-
-
Ristanoski, G.1
Liu, W.2
Bailey, J.3
-
60
-
-
79951752243
-
Accelerating dynamic time warping subsequence search with GPUs and FPGAS
-
D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. Accelerating dynamic time warping subsequence search with gpus and fpgas. In ICDM, pages 1001-1006, 2010.
-
(2010)
ICDM
, pp. 1001-1006
-
-
Sart, D.1
Mueen, A.2
Najjar, W.3
Keogh, E.4
Niennattrakul, V.5
-
61
-
-
77954672890
-
Fast and scalable local kernel machines
-
N. Segata and E. Blanzieri. Fast and scalable local kernel machines. JMLR, 11:1883-1926, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1883-1926
-
-
Segata, N.1
Blanzieri, E.2
-
64
-
-
0035344742
-
Predictive approaches for choosing hyperparameters in Gaussian processes
-
S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in gaussian processes. Neural Computation, 13(5):1103-1118, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.5
, pp. 1103-1118
-
-
Sundararajan, S.1
Keerthi, S.S.2
-
65
-
-
84860609370
-
Variational learning of inducing variables in sparse Gaussian processes
-
M. K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In AISTATS, pages 567-574, 2009.
-
(2009)
AISTATS
, pp. 567-574
-
-
Titsias, M.K.1
-
66
-
-
0036211177
-
Discovering similar multidimensional trajectories
-
M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories. In ICDE, pages 673-684, 2002.
-
(2002)
ICDE
, pp. 673-684
-
-
Vlachos, M.1
Kollios, G.2
Gunopulos, D.3
-
67
-
-
84896063608
-
A knn based kalman filter Gaussian process regression
-
Y. Wang and B. Chaib-Draa. A knn based kalman filter gaussian process regression. In IJCAI, pages 1771-1777, 2013.
-
(2013)
IJCAI
, pp. 1771-1777
-
-
Wang, Y.1
Chaib-Draa, B.2
-
68
-
-
0000903748
-
Generalization of backpropagation with application to a recurrent gas market model
-
P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1(4):339-356, 1988.
-
(1988)
Neural Networks
, vol.1
, Issue.4
, pp. 339-356
-
-
Werbos, P.J.1
-
69
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
C. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In NIPS, pages 682-688, 2001.
-
(2001)
NIPS
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
-
70
-
-
85072768928
-
Gaussian processes for regression
-
C. K. Williams and C. E. Rasmussen. Gaussian processes for regression. In NIPS, pages 514-520, 1996.
-
(1996)
NIPS
, pp. 514-520
-
-
Williams, C.K.1
Rasmussen, C.E.2
-
71
-
-
0000082693
-
Forecasting sales by exponentially weighted moving averages
-
P. R. Winters. Forecasting sales by exponentially weighted moving averages. Management Science, 6(3):324-342, 1960.
-
(1960)
Management Science
, vol.6
, Issue.3
, pp. 324-342
-
-
Winters, P.R.1
-
72
-
-
70449410017
-
Gaussian process for long-term time-series forecasting
-
W. Yan, H. Qiu, and Y. Xue. Gaussian process for long-term time-series forecasting. In IJCNN, pages 3420-3427, 2009.
-
(2009)
IJCNN
, pp. 3420-3427
-
-
Yan, W.1
Qiu, H.2
Xue, Y.3
-
73
-
-
66549108289
-
Consistency and localizability
-
A. Zakai and Y. Ritov. Consistency and localizability. JMLR, 10:827-856, 2009.
-
(2009)
JMLR
, vol.10
, pp. 827-856
-
-
Zakai, A.1
Ritov, Y.2
-
74
-
-
33845566162
-
SVM-knn: Discriminative nearest neighbor classification for visual category recognition
-
H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In CVPR, pages 2126-2136, 2006.
-
(2006)
CVPR
, pp. 2126-2136
-
-
Zhang, H.1
Berg, A.C.2
Maire, M.3
Malik, J.4
-
75
-
-
33749243068
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, pages 116-123, 2004.
-
(2004)
ICML
, pp. 116-123
-
-
Zhang, T.1
-
76
-
-
84891095458
-
R2-d2: A system to support probabilistic path prediction in dynamic environments via "semi-lazy" learning
-
J. Zhou, A. K. Tung, W. Wu, and W. S. Ng. R2-d2: a system to support probabilistic path prediction in dynamic environments via "semi-lazy" learning. PVLDB, 6(12):1366-1369, 2013.
-
(2013)
PVLDB
, vol.6
, Issue.12
, pp. 1366-1369
-
-
Zhou, J.1
Tung, A.K.2
Wu, W.3
Ng, W.S.4
-
77
-
-
85008648361
-
A "semi-lazy" approach to probabilistic path prediction in dynamic environments
-
J. Zhou, A. K. Tung, W. Wu, and W. S. Ng. A "semi-lazy" approach to probabilistic path prediction in dynamic environments. In KDD, pages 748-756, 2013.
-
(2013)
KDD
, pp. 748-756
-
-
Zhou, J.1
Tung, A.K.2
Wu, W.3
Ng, W.S.4
-
78
-
-
1142279463
-
Warping indexes with envelope transforms for query by humming
-
Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by humming. In SIGMOD, pages 181-192, 2003.
-
(2003)
SIGMOD
, pp. 181-192
-
-
Zhu, Y.1
Shasha, D.2
|