메뉴 건너뛰기




Volumn 37, Issue 3, 2011, Pages 295-309

Projected sequential Gaussian processes: A C++ tool for interpolation of large datasets with heterogeneous noise

Author keywords

Heterogeneous data; Low rank approximations; Sensor fusion

Indexed keywords

BAYESIAN; BAYESIAN APPROACHES; BAYESIAN FRAMEWORKS; C++ LIBRARIES; COVARIANCE FUNCTION; COVARIANCE PARAMETERS; DATA SETS; ERROR CHARACTERISTICS; GAUSSIAN PROCESSES; GEOSTATISTICAL APPROACH; HETEROGENEOUS DATA; HETEROGENEOUS DATASETS; HIGH-DIMENSIONAL INTEGRALS; LARGE DATASETS; LOW-RANK APPROXIMATIONS; MACHINE-LEARNING; MINIMAL INFORMATION; MODEL-BASED; MONTE CARLO; NON-GAUSSIAN; OBSERVATION ERRORS; OBSERVATION OPERATOR; REAL DATA SETS; REDUCED RANK; SENSOR FUSION; SENSOR MODEL; SEQUENTIAL ESTIMATION; SEQUENTIAL METHODS; SPATIAL STATISTICS;

EID: 79952196502     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2010.05.008     Document Type: Article
Times cited : (5)

References (37)
  • 5
    • 33646256299 scopus 로고    scopus 로고
    • Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography
    • Bourennane H., Dère C., Lamy I., Cornu S., Baize D., Van Oort F., King D. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography. The Science of the Total Environment 2006, 361(1-3):229-248.
    • (2006) The Science of the Total Environment , vol.361 , Issue.1-3 , pp. 229-248
    • Bourennane, H.1    Dère, C.2    Lamy, I.3    Cornu, S.4    Baize, D.5    Van Oort, F.6    King, D.7
  • 8
    • 17344370420 scopus 로고    scopus 로고
    • Sequential, Bayesian geostatistics: a principled method for large data sets
    • Cornford D., Csato L., Opper M. Sequential, Bayesian geostatistics: a principled method for large data sets. Geographical Analysis 2005, 37:183-199.
    • (2005) Geographical Analysis , vol.37 , pp. 183-199
    • Cornford, D.1    Csato, L.2    Opper, M.3
  • 10
    • 41549083867 scopus 로고    scopus 로고
    • Open Geospatial Consortium, Inc, (accessed 23.06.10)
    • Cox S. Observations and Measurements, Part 1 2007, Open Geospatial Consortium, Inc, p. 85, 〈http://www.opengeospatial.org/standards/om〉 (accessed 23.06.10).
    • (2007) Observations and Measurements, Part 1 , pp. 85
    • Cox, S.1
  • 13
    • 14344257510 scopus 로고    scopus 로고
    • Gaussian Processes-Iterative Sparse Approximations
    • Ph.D. Dissertation, Neural Computing Research Group, Aston University. Birmingham, UK.
    • Csató, L., 2002. Gaussian Processes-Iterative Sparse Approximations. Ph.D. Dissertation, Neural Computing Research Group, Aston University. Birmingham, UK, 116pp.
    • (2002) , pp. 116
    • Csató, L.1
  • 14
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online Gaussian processes
    • Csató L., Opper M. Sparse online Gaussian processes. Neural Computation 2002, 14(3):641-668.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 16
    • 0042401905 scopus 로고    scopus 로고
    • Spectral methods for nonstationary spatial processes
    • Fuentes M. Spectral methods for nonstationary spatial processes. Biometrika 2002, 89(1):197-210.
    • (2002) Biometrika , vol.89 , Issue.1 , pp. 197-210
    • Fuentes, M.1
  • 19
    • 0024992831 scopus 로고
    • Kriging and automated variogram modeling within a moving window
    • Haas T.C. Kriging and automated variogram modeling within a moving window. Atmospheric Environment. Part A. General Topics 1990, 24(7):1759-1769.
    • (1990) Atmospheric Environment. Part A. General Topics , vol.24 , Issue.7 , pp. 1759-1769
    • Haas, T.C.1
  • 20
    • 79952188297 scopus 로고    scopus 로고
    • Projected spatial Gaussian process (psgp) methods, 〈〉 (accessed 23.06.10).
    • Ingram, B., Barillec, R., 2009. Projected spatial Gaussian process (psgp) methods, 〈〉 (accessed 23.06.10). http://cran.r-project.org/web/packages/psgp/.
    • (2009)
    • Ingram, B.1    Barillec, R.2
  • 21
    • 79952183356 scopus 로고    scopus 로고
    • Gaussian process toolkit (gptk), 〈〉 (accessed 23.06.10).
    • Ingram, B., Barillec, R., Cornford, D., 2010. Gaussian process toolkit (gptk), 〈〉 (accessed 23.06.10). http://code.google.com/p/gptk/.
    • (2010)
    • Ingram, B.1    Barillec, R.2    Cornford, D.3
  • 22
    • 0004093509 scopus 로고    scopus 로고
    • Remote sensing of the environment: an earth resource perspective
    • Prenctice-Hall, Upper Saddle River, NJ
    • Jensen J. Remote sensing of the environment: an earth resource perspective. Geographic Information Science 2000, 544. Prenctice-Hall, Upper Saddle River, NJ.
    • (2000) Geographic Information Science , pp. 544
    • Jensen, J.1
  • 28
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka T.P. Expectation propagation for approximate Bayesian inference. Uncertainty in Artificial Intelligence 2001, 17:362-369.
    • (2001) Uncertainty in Artificial Intelligence , vol.17 , pp. 362-369
    • Minka, T.P.1
  • 29
    • 79952186622 scopus 로고    scopus 로고
    • Open Geospatial Consortium, I., Sensor web enablement standard, 〈〉 (accessed 23.06.10).
    • Open Geospatial Consortium, I., 2007. Sensor web enablement standard, 〈〉 (accessed 23.06.10). http://www.opengeospatial.org/ogc/markets-technologies/swe.
    • (2007)
  • 30
    • 6244242863 scopus 로고    scopus 로고
    • Online versus offline learning from random examples: general results
    • Opper M. Online versus offline learning from random examples: general results. Physical Review Letters 1996, 77(22):4671-4674.
    • (1996) Physical Review Letters , vol.77 , Issue.22 , pp. 4671-4674
    • Opper, M.1
  • 31
    • 79952194017 scopus 로고    scopus 로고
    • IT++, a C++ library of mathematical, signal processing and communication routines, 〈〉 (accessed 23.06.10).
    • Ottosson, T., Piatyszek, A., et al., 2009. IT++, a C++ library of mathematical, signal processing and communication routines, 〈〉 (accessed 23.06.10). http://sourceforge.net/apps/wordpress/itpp/.
    • (2009)
    • Ottosson, T.1    Piatyszek, A.2
  • 32
    • 0031903765 scopus 로고    scopus 로고
    • Gstat: a program for geostatistical modelling prediction and simulation
    • Pebesma E., Wesseling C. Gstat: a program for geostatistical modelling prediction and simulation. Computers & Geosciences 1998, 24(1):17-31.
    • (1998) Computers & Geosciences , vol.24 , Issue.1 , pp. 17-31
    • Pebesma, E.1    Wesseling, C.2
  • 35
    • 79952184923 scopus 로고    scopus 로고
    • Inter-calibration of gamma dose rate detectors on the european scale
    • Stöhlker U., Bleher M., Szegvary T., Conen F. Inter-calibration of gamma dose rate detectors on the european scale. Radioprotection 2009, 44:777-783.
    • (2009) Radioprotection , vol.44 , pp. 777-783
    • Stöhlker, U.1    Bleher, M.2    Szegvary, T.3    Conen, F.4
  • 36
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Williams C. Computation with infinite neural networks. Neural Computation 1998, 10(5):1203-1216.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.1
  • 37
    • 79952194423 scopus 로고    scopus 로고
    • Gnuplot, an interactive plotting program, 〈〉 (accessed 23.06.10).
    • Williams, T., Kelley, C., et al., 2009. Gnuplot, an interactive plotting program, 〈〉 (accessed 23.06.10). http://www.gnuplot.info.
    • (2009)
    • Williams, T.1    Kelley, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.