메뉴 건너뛰기




Volumn 13, Issue 5, 2001, Pages 1103-1118

Predictive approaches for choosing hyperparameters in gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; NORMAL DISTRIBUTION; PROBABILITY; REGRESSION ANALYSIS; REPRODUCIBILITY; STATISTICAL MODEL;

EID: 0035344742     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/08997660151134343     Document Type: Article
Times cited : (112)

References (18)
  • 1
    • 84874257732 scopus 로고
    • Better subset regression using the non-negative garrote
    • Breiman, L. (1995). Better subset regression using the non-negative garrote. Technometrics, 37(4), 373-384.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 2
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation and the repeated learning testing methods
    • Burman, P. (1989). A comparative study of ordinary cross-validation and the repeated learning testing methods. Biometrika, 76(3), 503-514.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 3
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math., 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 4
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife and cross-validation
    • Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife and cross-validation. American Statistician, 37(1), 36-48.
    • (1983) American Statistician , vol.37 , Issue.1 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 5
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Stat., 19, 1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 11
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of gaussian process models for Bayesian regression and classification
    • Toronto: Department of Statistics, University of Toronto
    • Neal, R. M. (1997). Monte Carlo implementation of gaussian process models for Bayesian regression and classification (Tech. Rep. No. 9702). Toronto: Department of Statistics, University of Toronto.
    • (1997) Tech. Rep. No. 9702
    • Neal, R.M.1
  • 14
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • with discussion.
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Statist. Soc. B, 36, 111-147.
    • (1974) J. R. Statist. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 17
    • 0039521507 scopus 로고    scopus 로고
    • Predictive approaches for choosing hyperparameters in gaussian processes
    • S. A. Solla, T. K. Leen, & K-R. Müller (Eds.), Cambridge, MA: MIT Press
    • Sundararajan, S., & Keerthi, S. S. (1999b). Predictive approaches for choosing hyperparameters in gaussian processes. In S. A. Solla, T. K. Leen, & K-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.12
    • Sundararajan, S.1    Keerthi, S.S.2
  • 18
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Williams, C.K.I.1    Rasmussen, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.