메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1883-1926

Fast and scalable Local Kernel machines

Author keywords

Instancebased learning; Kernel methods; Local learning algorithms; Locality; Support vector machines

Indexed keywords

APPROPRIATE MODELS; CLASSIFICATION ACCURACY; COMPLEXITY BOUNDS; COMPUTATIONALLY EFFICIENT; DATA SETS; EMPIRICAL EVALUATIONS; HIGH DIMENSIONAL DATA; INSTANCE BASED LEARNING; KERNEL METHODS; LEARNING APPROACH; LEARNING PROCESS; LOCAL INFORMATION; LOCAL KERNEL; LOCAL LEARNING; LOCAL MODEL; LOCALIZABILITY; OPTIMISATIONS; QUERY POINTS; SEPARATION FUNCTIONS; SPEED-UPS; SVM SOLVERS; TESTING TIME; TRAINING SETS;

EID: 77954672890     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (78)

References (79)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers Norwell, MA, USA
    • David W. Aha. Lazy Learning. Kluwer Academic Publishers Norwell, MA, USA, 1997.
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 2
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary : A unifying approach for margin classifiers. Journal of Machine Learning Research, 1:113-141, 2000.
    • (2000) Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 7
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Jock A Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture, 24: 131-151, 1999.
    • (1999) Computers and Electronics in Agriculture , vol.24 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 8
    • 84904790643 scopus 로고    scopus 로고
    • Evaluation of the highest probability SVM nearest neighbor classifier with variable relative error cost
    • Mountain View, California
    • Enrico Blanzieri and Anton Bryl. Evaluation of the highest probability SVM nearest neighbor classifier with variable relative error cost. In CEAS 2007, Mountain View, California, 2007.
    • (2007) CEAS 2007
    • Blanzieri, E.1    Bryl, A.2
  • 10
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Enrico Blanzieri and Farid Melgani. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Transactions on Geoscience and Remote Sensing, 46(6): 1804-1811, 2008.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 11
    • 33646451825 scopus 로고    scopus 로고
    • The Huller: A simple and efficient online SVM
    • Lecture Notes in Artificial Intelligence, LNAI 3720, Springer Verlag
    • Antoine Bordes and Léon Bottou. The Huller: A simple and efficient online SVM. In Machine Learning: ECML 2005, Lecture Notes in Artificial Intelligence, LNAI 3720, pages 505-512. Springer Verlag, 2005.
    • (2005) Machine Learning: ECML 2005 , pp. 505-512
    • Bordes, A.1    Bottou, L.2
  • 13
    • 68949096711 scopus 로고    scopus 로고
    • SGD-QN: Careful quasi-Newton stochastic gradient descent
    • July
    • Antoine Bordes, Léon Bottou, and Patrick Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. Journal of Machine Learning Research, 10:1737-1754, July 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1737-1754
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3
  • 14
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Léon Bottou and Vladimir N. Vapnik. Local learning algorithms. Neural Computation, 4(6):888-900, 1992.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.N.2
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • August
    • Leo Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, August 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • David Broomhead and David Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 19
    • 48849104146 scopus 로고    scopus 로고
    • Coordinate descent method for large-scale 12loss linear support vector machines
    • Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-scale 12loss linear support vector machines. Journal of Machine Learning Research, 9:1369-1398, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1369-1398
    • Chang, K.-W.1    Hsieh, C.-J.2    Lin, C.-J.3
  • 21
    • 14044272118 scopus 로고    scopus 로고
    • New analysis of the sphere covering problems and optimal polytope approximation of convex bodies
    • Long Chen. New analysis of the sphere covering problems and optimal polytope approximation of convex bodies. Journal of Approximation Theory, 133(1): 134, 2005.
    • (2005) Journal of Approximation Theory , vol.133 , Issue.1 , pp. 134
    • Chen, L.1
  • 23
    • 0000301097 scopus 로고
    • A greedy heuristic for the set-covering problem
    • Vašek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, pages 233-235, 1979.
    • (1979) Mathematics of Operations Research , pp. 233-235
    • Chvátal, V.1
  • 25
    • 50949133940 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for conditional random fields and max-margin markov networks
    • Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett. Exponentiated gradient algorithms for conditional random fields and max-margin markov networks. Journal of Machine Learning Research, 9:1775-1822, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1775-1822
    • Collins, M.1    Globerson, A.2    Koo, T.3    Carreras, X.4    Bartlett, P.L.5
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 29
    • 17144374074 scopus 로고    scopus 로고
    • Fast SVM training algorithm with decomposition on very large data sets
    • Senior MemberKrzyzak, Adam and Fellow-Suen, Ching Y.
    • Jian-xiong Dong. Fast SVM training algorithm with decomposition on very large data sets. IEEE Transaction Pattern Analysis and Machine Intelligence, 27(4):603-618, 2005. Senior MemberKrzyzak, Adam and Fellow-Suen, Ching Y.
    • (2005) IEEE Transaction Pattern Analysis and Machine Intelligence , vol.27 , Issue.4 , pp. 603-618
    • Dong, J.-X.1
  • 30
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 6: 1889-1918, 2005.
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 32
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Milton Friedman. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11(1):86-92, 1940.
    • (1940) The Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 36
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 40
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural SVMs. Machine Learning, 77(1):27-59, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.J.3
  • 42
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite Newton method for fast solution of large scale linear SVMs
    • Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 341-361
    • Keerthi, S.1    DeCoste, D.2
  • 43
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7: 1493-1515, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1493-1515
    • Keerthi, S.1    Chapelle, O.2    DeCoste, D.3
  • 44
    • 77954671642 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • Stefan Knerr, Leon Personnaz, and Gerard Dreyfus. Single-layer learning revisited: A stepwise procedure for building and training a neural network. Optimization Methods and Software, 1: 23-34, 1990.
    • (1990) Optimization Methods and Software , vol.1 , pp. 23-34
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 45
    • 1842434970 scopus 로고    scopus 로고
    • Navigating nets: Simple algorithms for proximity search
    • Philadelphia, PA, USA, Society for Industrial and Applied Mathematics
    • Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search. In Fifteenth Annual ACM-SIAM Symposium on Discrete algorithms (SODA 04), pages 798-807, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
    • (2004) Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 04) , pp. 798-807
    • Krauthgamer, R.1    Lee, J.R.2
  • 49
    • 33847169137 scopus 로고    scopus 로고
    • Comments on the "Core vector machines: Fast SVM training on very large data sets
    • Gaëlle Loosli and Stéphane Canu. Comments on the "Core vector machines: Fast SVM training on very large data sets". Journal of Machine Learning Research, 8: 291-301, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 291-301
    • Loosli, G.1    Canu, S.2
  • 50
    • 0036817951 scopus 로고    scopus 로고
    • A finite Newton method for classification
    • Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5): 913-929, 2002.
    • (2002) Optimization Methods and Software , vol.17 , Issue.5 , pp. 913-929
    • Mangasarian, O.L.1
  • 52
    • 0003612091 scopus 로고
    • Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Campbell, editors. Ellis Horwood, Upper Saddle River, NJ, USA, ISBN0-13-106360-X.
    • Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Campbell, editors. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994. ISBN0-13-106360-X.
    • (1994) Machine Learning, Neural and Statistical Classification
  • 56
    • 70350252303 scopus 로고    scopus 로고
    • Technical Report DISI09-025, id 1613, DISI, University of Trento, Italy, Software
    • Nicola Segata. FaLKM-Hb v1.0: A library for fast local kernel machines. Technical Report DISI09-025, id 1613, DISI, University of Trento, Italy, 2009. Software available at http://disi. unitn.it/~segata/FaLKM-lib
    • (2009) FaLKM-Hb V1.0: A Library for Fast Local Kernel Machines
    • Segata, N.1
  • 58
    • 77954688281 scopus 로고    scopus 로고
    • Operators for transforming kernels into quasi-local kernels that improve SVM accuracy
    • id 1652, Tech. rep., DISI, University of Trento
    • Nicola Segata and Enrico Blanzieri. Operators for transforming kernels into quasi-local kernels that improve SVM accuracy. Technical Report DISI-09-042, id 1652, Tech. rep., DISI, University of Trento, 2009b.
    • (2009) Technical Report DISI-09-042
    • Segata, N.1    Blanzieri, E.2
  • 67
    • 33744820625 scopus 로고    scopus 로고
    • Detection of non-coding rnas on the basis of predicted secondary structure formation free energy change
    • Andrew V Uzilov, Joshua M. Keegan, and David H. Mathews. Detection of non-coding rnas on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics, 7(1): 173, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 173
    • Uzilov, A.V.1    Keegan, J.M.2    Mathews, D.H.3
  • 69
    • 0007487086 scopus 로고
    • Local algorithms for pattern recognition and dependencies estimation
    • Vladimir N. Vapnik and Léon Bottou. Local algorithms for pattern recognition and dependencies estimation. Neural Computation, 5(6): 893-909, 1993.
    • (1993) Neural Computation , vol.5 , Issue.6 , pp. 893-909
    • Vapnik, V.N.1    Bottou, L.2
  • 71
    • 38649135451 scopus 로고    scopus 로고
    • Linear programming minimum sphere set covering for extreme learning machines
    • Xun-Kai Wei and Ying-Hong Li. Linear programming minimum sphere set covering for extreme learning machines. Neurocomputing, 71(4-6): 570-575, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 570-575
    • Wei, X.-K.1    Li, Y.-H.2
  • 72
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6): 80-83, 1945.
    • (1945) Biometrics Bulletin , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 73
    • 56449083499 scopus 로고    scopus 로고
    • Adaptive local hyperplane classification
    • Tao Yang and Vojislav Kecman. Adaptive local hyperplane classification. Neurocomputing, 71 (13-15): 3001-3004, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 3001-3004
    • Yang, T.1    Kecman, V.2
  • 74
    • 69949089661 scopus 로고    scopus 로고
    • Adaptive local hyperplane algorithm for learning small medical data sets
    • Tao Yang and Vojislav Kecman. Adaptive local hyperplane algorithm for learning small medical data sets. Expert Systems, 26(4): 355-359, 2009.
    • (2009) Expert Systems , vol.26 , Issue.4 , pp. 355-359
    • Yang, T.1    Kecman, V.2
  • 75
    • 73749088181 scopus 로고    scopus 로고
    • Face recognition with adaptive local hyperplane algorithm
    • ISSN 1433-7541
    • Tao Yang and Vojislav Kecman. Face recognition with adaptive local hyperplane algorithm. Pattern Analysis & Applications, 13(l):79-83, 2010. ISSN 1433-7541.
    • (2010) Pattern Analysis & Applications , vol.13 , Issue.50 , pp. 79-83
    • Yang, T.1    Kecman, V.2
  • 76
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • Alan L. Yuille and Anand Rangarajan. The concave-convex procedure. Neural Computation, 15(4): 915-936, 2003.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 78
    • 33745784205 scopus 로고    scopus 로고
    • Parallel software for training large scale support vector machines on multiprocessor systems
    • Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7: 1467-1492, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1467-1492
    • Zanni, L.1    Serafini, T.2    Zanghirati, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.