메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 748-756

A "Semi-Lazy" Approach to Probabilistic Path Prediction in Dynamic Environments

Author keywords

Lazy learning; Spatial Temporal data mining; Trajectory analysis

Indexed keywords

DATA MINING; EDUCATION; LEARNING ALGORITHMS; TRAJECTORIES;

EID: 85008648361     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487609     Document Type: Conference Paper
Times cited : (53)

References (29)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188, 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 2
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • J. L. Bentley. Multidimensional binary search trees used for associative searching. COMMUN. ACM, 18(9):509-517, 1975.
    • (1975) COMMUN. ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 3
    • 0036606530 scopus 로고    scopus 로고
    • A framework for generating network-based moving objects
    • T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica, 6(2):153-180, 2002.
    • (2002) GeoInformatica , vol.6 , Issue.2 , pp. 153-180
    • Brinkhoff, T.1
  • 4
    • 70350671491 scopus 로고    scopus 로고
    • Efficient anomaly monitoring over moving object trajectory streams
    • Y. Bu, L. Chen, A. Fu, and D. Liu. Efficient anomaly monitoring over moving object trajectory streams. In SIGKDD, pages 159-168, 2009.
    • (2009) SIGKDD , pp. 159-168
    • Bu, Y.1    Chen, L.2    Fu, A.3    Liu, D.4
  • 5
    • 4544385907 scopus 로고    scopus 로고
    • Querying imprecise data in moving object environments
    • R. Cheng, D. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object environments. TKDE, 16(9):1112-1127, 2004.
    • (2004) TKDE , vol.16 , Issue.9 , pp. 1112-1127
    • Cheng, R.1    Kalashnikov, D.2    Prabhakar, S.3
  • 6
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • W. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. J. of classification, 1(1):7-24, 1984.
    • (1984) J. of Classification , vol.1 , Issue.1 , pp. 7-24
    • Day, W.1    Edelsbrunner, H.2
  • 7
    • 0015600423 scopus 로고
    • The viterbi algorithm
    • G. Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278, 1973.
    • (1973) Proceedings of the IEEE , vol.61 , Issue.3 , pp. 268-278
    • Forney, G.1
  • 8
    • 52649158650 scopus 로고    scopus 로고
    • A hybrid prediction model for moving objects
    • H. Jeung, Q. Liu, H. Shen, and X. Zhou. A hybrid prediction model for moving objects. In ICDE, pages 70-79, 2008.
    • (2008) ICDE , pp. 70-79
    • Jeung, H.1    Liu, Q.2    Shen, H.3    Zhou, X.4
  • 9
    • 77955177092 scopus 로고    scopus 로고
    • Path prediction and predictive range querying in road network databases
    • H. Jeung, M. Yiu, X. Zhou, and C. Jensen. Path prediction and predictive range querying in road network databases. The VLDB Journal, 19(4):585-602, 2010.
    • (2010) The VLDB Journal , vol.19 , Issue.4 , pp. 585-602
    • Jeung, H.1    Yiu, M.2    Zhou, X.3    Jensen, C.4
  • 10
    • 77958573868 scopus 로고    scopus 로고
    • A Bayesian nonparametric approach to modeling mobility patterns
    • J. Joseph, F. Doshi-Velez, and N. Roy. A bayesian nonparametric approach to modeling mobility patterns. In AAAI, pages 1587-1593, 2010.
    • (2010) AAAI , pp. 1587-1593
    • Joseph, J.1    Doshi-Velez, F.2    Roy, N.3
  • 11
    • 19544394267 scopus 로고    scopus 로고
    • A predictive location model for location-based services
    • H. Karimi and X. Liu. A predictive location model for location-based services. In GIS, pages 126-133, 2003.
    • (2003) GIS , pp. 126-133
    • Karimi, H.1    Liu, X.2
  • 12
    • 34548853976 scopus 로고    scopus 로고
    • Computing: The wireless epidemic
    • J. Kleinberg. Computing: The wireless epidemic. Nature, 449:287-288, 2007.
    • (2007) Nature , vol.449 , pp. 287-288
    • Kleinberg, J.1
  • 13
    • 33750318706 scopus 로고    scopus 로고
    • Predestination: Inferring destinations from partial trajectories
    • J. Krumm and E. Horvitz. Predestination: Inferring destinations from partial trajectories. In UbiComp, pages 243-260, 2006.
    • (2006) UbiComp , pp. 243-260
    • Krumm, J.1    Horvitz, E.2
  • 14
    • 67649653756 scopus 로고    scopus 로고
    • Temporal outlier detection in vehicle traffic data
    • X. Li, Z. Li, J. Han, and J. Lee. Temporal outlier detection in vehicle traffic data. In ICDE, pages 1319-1322, 2009.
    • (2009) ICDE , pp. 1319-1322
    • Li, X.1    Li, Z.2    Han, J.3    Lee, J.4
  • 15
    • 84867472390 scopus 로고    scopus 로고
    • Predictability of individuals' mobility with high-resolution positioning data
    • M. Lin, W.-J. Hsu, and Z. Q. Lee. Predictability of individuals' mobility with high-resolution positioning data. In UbiComp, pages 381-390, 2012.
    • (2012) UbiComp , pp. 381-390
    • Lin, M.1    Hsu, W.-J.2    Lee, Z.Q.3
  • 16
    • 70350649119 scopus 로고    scopus 로고
    • Wherenext: A location predictor on trajectory pattern mining
    • A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: A location predictor on trajectory pattern mining. In SIGKDD, pages 637-646, 2009.
    • (2009) SIGKDD , pp. 637-646
    • Monreale, A.1    Pinelli, F.2    Trasarti, R.3    Giannotti, F.4
  • 17
    • 33845275402 scopus 로고    scopus 로고
    • Prediction of moving object location based on frequent trajectories
    • M. Morzy. Prediction of moving object location based on frequent trajectories. In ISCIS, pages 583-592, 2006.
    • (2006) ISCIS , pp. 583-592
    • Morzy, M.1
  • 18
    • 37249082461 scopus 로고    scopus 로고
    • Mining frequent trajectories of moving objects for location prediction
    • M. Morzy. Mining frequent trajectories of moving objects for location prediction. In MLDM, pages 667-680, 2007.
    • (2007) MLDM , pp. 667-680
    • Morzy, M.1
  • 20
    • 84868278154 scopus 로고    scopus 로고
    • Far out: Predicting long-Term human mobility
    • A. Sadilek and J. Krumm. Far out: Predicting long-Term human mobility. In AAAI, pages 814-820, 2012.
    • (2012) AAAI , pp. 814-820
    • Sadilek, A.1    Krumm, J.2
  • 21
    • 84864248652 scopus 로고    scopus 로고
    • Multidimensional analysis of atypical events in cyber-physical data
    • L. Tang, X. Yu, S. Kim, J. Han, W. Peng, Y. Sun, H. Gonzalez, and S. Seith. Multidimensional analysis of atypical events in cyber-physical data. In ICDE, pages 1025-1036, 2012.
    • (2012) ICDE , pp. 1025-1036
    • Tang, L.1    Yu, X.2    Kim, S.3    Han, J.4    Peng, W.5    Sun, Y.6    Gonzalez, H.7    Seith, S.8
  • 22
    • 84864220477 scopus 로고    scopus 로고
    • On discovery of traveling companions from streaming trajectories
    • L. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. Hung, and W. Peng. On discovery of traveling companions from streaming trajectories. In ICDE, pages 186-197, 2012.
    • (2012) ICDE , pp. 186-197
    • Tang, L.1    Zheng, Y.2    Yuan, J.3    Han, J.4    Leung, A.5    Hung, C.6    Peng, W.7
  • 23
    • 3142713119 scopus 로고    scopus 로고
    • Prediction and indexing of moving objects with unknown motion patterns
    • Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects with unknown motion patterns. In SIGMOD, pages 611-622, 2004.
    • (2004) SIGMOD , pp. 611-622
    • Tao, Y.1    Faloutsos, C.2    Papadias, D.3    Liu, B.4
  • 24
    • 0039845407 scopus 로고    scopus 로고
    • Indexing the positions of continuously moving objects
    • S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously moving objects. In SIGMOD, pages 331-342, 2000.
    • (2000) SIGMOD , pp. 331-342
    • Šaltenis, S.1    Jensen, C.S.2    Leutenegger, S.T.3    Lopez, M.A.4
  • 25
    • 84870744470 scopus 로고    scopus 로고
    • To taxi or not to taxic - enabling personalised and real-Time transportation decisions for mobile users
    • W. Wu, W. S. Ng, S. Krishnaswamy, and A. Sinha. To taxi or not to taxic - enabling personalised and real-Time transportation decisions for mobile users. In MDM, pages 320-323, 2012.
    • (2012) MDM , pp. 320-323
    • Wu, W.1    Ng, W.S.2    Krishnaswamy, S.3    Sinha, A.4
  • 26
    • 84881344873 scopus 로고    scopus 로고
    • Destination prediction by sub-Trajectory synthesis and privacy protection against such prediction
    • A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. Destination prediction by sub-Trajectory synthesis and privacy protection against such prediction. In ICDE, 2013.
    • (2013) ICDE
    • Xue, A.Y.1    Zhang, R.2    Zheng, Y.3    Xie, X.4    Huang, J.5    Xu, Z.6
  • 27
  • 28
    • 84863012037 scopus 로고    scopus 로고
    • Semantic trajectory mining for location prediction
    • J. Ying, W. Lee, T. Weng, and V. Tseng. Semantic trajectory mining for location prediction. In GIS, pages 34-43, 2011.
    • (2011) GIS , pp. 34-43
    • Ying, J.1    Lee, W.2    Weng, T.3    Tseng, V.4
  • 29
    • 84866645335 scopus 로고    scopus 로고
    • Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-Agents
    • B. Zhou, X. Wang, and X. Tang. Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-Agents. In CVPR, pages 2871-2878, 2012.
    • (2012) CVPR , pp. 2871-2878
    • Zhou, B.1    Wang, X.2    Tang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.