메뉴 건너뛰기




Volumn 41, Issue 1, 2014, Pages 30-41

Ensemble learning from multiple information sources via label propagation and consensus

Author keywords

Consensus; Ensemble learning; Label propagation; Multiple information sources

Indexed keywords

BASELINE METHODS; CLASS LABEL INFORMATIONS; CONSENSUS; ENSEMBLE LEARNING; INFORMATION SOURCES; INTERNAL STRUCTURE; LABEL PROPAGATION; TRAINING OBJECTS;

EID: 84957436848     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-013-0508-7     Document Type: Article
Times cited : (12)

References (45)
  • 1
    • 35648962340 scopus 로고    scopus 로고
    • Synthesizing heavy association rules from different real data sources
    • Adhikari A, Rao RR (2008) Synthesizing heavy association rules from different real data sources. Pattern Recognit Lett 29(1):59–71
    • (2008) Pattern Recognit Lett , vol.29 , Issue.1 , pp. 59-71
    • Adhikari, A.1    Rao, R.R.2
  • 2
    • 79953164727 scopus 로고    scopus 로고
    • Study of select items in different data sources by grouping
    • Adhikari A, Ramachandrarao P, Pedrycz W (2011) Study of select items in different data sources by grouping. Knowl Inf Syst 27(1):23–43
    • (2011) Knowl Inf Syst , vol.27 , Issue.1 , pp. 23-43
    • Adhikari, A.1    Ramachandrarao, P.2    Pedrycz, W.3
  • 3
    • 84882825999 scopus 로고    scopus 로고
    • A new semi-supervised hierarchical active clustering based on ranking constraints for analysts groupization
    • Ahmed E, Nabli A, Gargouri F (2013) A new semi-supervised hierarchical active clustering based on ranking constraints for analysts groupization. Appl Intell 39(2):217–235
    • (2013) Appl Intell , vol.39 , Issue.2 , pp. 217-235
    • Ahmed, E.1    Nabli, A.2    Gargouri, F.3
  • 4
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M, Laaksonen J (2006) Using diversity of errors for selecting members of a committee classifier. Pattern Recognit 39:608–623
    • (2006) Pattern Recognit , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 5
    • 84888025347 scopus 로고    scopus 로고
    • The address connector: noninvasive synchronization of hierarchical data sources
    • Augsten N, Bohlen M, Gamper J (2013) The address connector: noninvasive synchronization of hierarchical data sources. Knowl Inf Syst 37(3):639–663
    • (2013) Knowl Inf Syst , vol.37 , Issue.3 , pp. 639-663
    • Augsten, N.1    Bohlen, M.2    Gamper, J.3
  • 6
    • 84957457685 scopus 로고    scopus 로고
    • Bache K, Lichman M (2013) UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA
    • Bache K, Lichman M (2013) UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA. http://archive.ics.uci.edu/ml
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 33745683937 scopus 로고    scopus 로고
    • Multi-agent plan based information gathering
    • Camacho D, Aler R, Borrajo D, Molina J (2006) Multi-agent plan based information gathering. Appl Intell 25(1):59–71
    • (2006) Appl Intell , vol.25 , Issue.1 , pp. 59-71
    • Camacho, D.1    Aler, R.2    Borrajo, D.3    Molina, J.4
  • 10
    • 2442430265 scopus 로고    scopus 로고
    • Multiple classifier combination for face-based identity verification
    • Czyz J, Kittler J, Vandendorpe L (2004) Multiple classifier combination for face-based identity verification. Pattern Recognit 37:1459–1469
    • (2004) Pattern Recognit , vol.37 , pp. 1459-1469
    • Czyz, J.1    Kittler, J.2    Vandendorpe, L.3
  • 13
    • 58149321460 scopus 로고    scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y (1996) Boosting a weak learning algorithm by majority. Inf Comput 121:256–285
    • (1996) Inf Comput , vol.121 , pp. 256-285
    • Freund, Y.1
  • 14
    • 84884590460 scopus 로고    scopus 로고
    • Adaptive semi-supervised learning on labeled and unlabeled data with different distributions
    • Fujino A, Ueda N, Nagata M (2013) Adaptive semi-supervised learning on labeled and unlabeled data with different distributions. Knowl Inf Syst 37:129–154
    • (2013) Knowl Inf Syst , vol.37 , pp. 129-154
    • Fujino, A.1    Ueda, N.2    Nagata, M.3
  • 15
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • Fumera G, Roli F (2005) A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 27(6):942–956
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 18
    • 84855599605 scopus 로고    scopus 로고
    • Streaming mining: a novel architecture for ensemble-based classification
    • Grossi V, Turini F (2012) Streaming mining: a novel architecture for ensemble-based classification. Knowl Inf Syst 30:247–281
    • (2012) Knowl Inf Syst , vol.30 , pp. 247-281
    • Grossi, V.1    Turini, F.2
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 21
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 23
    • 84892854554 scopus 로고    scopus 로고
    • A weighted voting framework for classifiers ensembles
    • Kuncheva L, Rodriguez J (2012) A weighted voting framework for classifiers ensembles. Knowl Inf Syst. doi:10.1007/s10115-012-0586-6
    • (2012) Knowl Inf Syst
    • Kuncheva, L.1    Rodriguez, J.2
  • 24
    • 84857820925 scopus 로고    scopus 로고
    • A new selective neural network ensemble with negative correlation
    • Lee H, Kim E, Pedrycz W (2012) A new selective neural network ensemble with negative correlation. Appl Intell 37(4):488–498
    • (2012) Appl Intell , vol.37 , Issue.4 , pp. 488-498
    • Lee, H.1    Kim, E.2    Pedrycz, W.3
  • 25
    • 14844303546 scopus 로고    scopus 로고
    • Semisupervised learning from different information sources
    • Li T, Ogihara M (2005) Semisupervised learning from different information sources. Knowl Inf Syst 7:289–309
    • (2005) Knowl Inf Syst , vol.7 , pp. 289-309
    • Li, T.1    Ogihara, M.2
  • 27
    • 0035370805 scopus 로고    scopus 로고
    • Designing for scalability in a knowledge fusion system
    • Preece A, Hui K, Gray A, Matri P (2001) Designing for scalability in a knowledge fusion system. Knowl-Based Syst 14:173–179
    • (2001) Knowl-Based Syst , vol.14 , pp. 173-179
    • Preece, A.1    Hui, K.2    Gray, A.3    Matri, P.4
  • 28
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R (1990) The strength of weak learnability. Mach Learn 5:197–227
    • (1990) Mach Learn , vol.5 , pp. 197-227
    • Schapire, R.1
  • 29
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37:297–336
    • (1999) Mach Learn , vol.37 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 30
    • 78149283512 scopus 로고    scopus 로고
    • Semi-supervised Bayesian ARTMAP
    • Tang XL, Han M (2010) Semi-supervised Bayesian ARTMAP. Appl Intell 33(3):202–317
    • (2010) Appl Intell , vol.33 , Issue.3 , pp. 202-317
    • Tang, X.L.1    Han, M.2
  • 31
    • 84957457686 scopus 로고    scopus 로고
    • The DBLP Computer Science Bibliography
    • The DBLP Computer Science Bibliography. http://www.informatik.uni-trier.de/~ley/db/
  • 32
    • 79956123704 scopus 로고    scopus 로고
    • Hybrid ensemble approach for classification
    • Verma B, Hassan S (2011) Hybrid ensemble approach for classification. Appl Intell 34(2):258–278
    • (2011) Appl Intell , vol.34 , Issue.2 , pp. 258-278
    • Verma, B.1    Hassan, S.2
  • 33
    • 84884290486 scopus 로고    scopus 로고
    • Boosting-SVM: effective learning with reduced data dimension
    • Wang CW, You WH (2013) Boosting-SVM: effective learning with reduced data dimension. Appl Intell 39(3):465–474
    • (2013) Appl Intell , vol.39 , Issue.3 , pp. 465-474
    • Wang, C.W.1    You, W.H.2
  • 34
    • 0037339975 scopus 로고    scopus 로고
    • Synthesizing high-frequency rules from different data sources
    • Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 15(2):353–367
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.2 , pp. 353-367
    • Wu, X.1    Zhang, S.2
  • 35
    • 84884288023 scopus 로고    scopus 로고
    • Multi-level rough set reduction for decision rule mining
    • Ye M, Wu X, Hu X, Hu D (2013) Multi-level rough set reduction for decision rule mining. Appl Intell 39(3):642–658
    • (2013) Appl Intell , vol.39 , Issue.3 , pp. 642-658
    • Ye, M.1    Wu, X.2    Hu, X.3    Hu, D.4
  • 36
    • 33646417316 scopus 로고    scopus 로고
    • Efficient classification across multiple database relations: a CrossMine approach
    • Yin X, Han J, Yang J, Yu PS (2006) Efficient classification across multiple database relations: a CrossMine approach. IEEE Trans Knowl Data Eng 18(6):770–783
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.6 , pp. 770-783
    • Yin, X.1    Han, J.2    Yang, J.3    Yu, P.S.4
  • 37
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • Yuan L, Wang Y, Thompson P, Narayan VA, Ye J (2012) Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61:622–632
    • (2012) NeuroImage , vol.61 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.3    Narayan, V.A.4    Ye, J.5
  • 38
    • 67349246439 scopus 로고    scopus 로고
    • Mining globally interesting patterns from multiple databases using kernel estimation
    • Zhang S, You X, Jin Z, Wu X (2009) Mining globally interesting patterns from multiple databases using kernel estimation. Expert Syst Appl 36(8):10863–10869
    • (2009) Expert Syst Appl , vol.36 , Issue.8 , pp. 10863-10869
    • Zhang, S.1    You, X.2    Jin, Z.3    Wu, X.4
  • 40
    • 84865438000 scopus 로고    scopus 로고
    • Cooperative sparse representation in two opposite directions for semi-supervised image annotation
    • Zhao Z, Glotin H, Xie Z, Gao J, Wu X (2012) Cooperative sparse representation in two opposite directions for semi-supervised image annotation. IEEE Trans Image Process 21(9):4218–4231
    • (2012) IEEE Trans Image Process , vol.21 , Issue.9 , pp. 4218-4231
    • Zhao, Z.1    Glotin, H.2    Xie, Z.3    Gao, J.4    Wu, X.5
  • 42
    • 84957457687 scopus 로고    scopus 로고
    • Zhu X (2005) Semi-supervised learning literature survey. Technical report 1530, Department of Computer Sciences, University of Wisconsin, Madison
    • Zhu X (2005) Semi-supervised learning literature survey. Technical report 1530, Department of Computer Sciences, University of Wisconsin, Madison
  • 44
    • 80455174024 scopus 로고    scopus 로고
    • CLAP: collaborative pattern mining for distributed information systems
    • Zhu X, Li B, Wu X, Dan H, Zhang C (2011) CLAP: collaborative pattern mining for distributed information systems. Decis Support Syst 52(1):40–51
    • (2011) Decis Support Syst , vol.52 , Issue.1 , pp. 40-51
    • Zhu, X.1    Li, B.2    Wu, X.3    Dan, H.4    Zhang, C.5
  • 45
    • 78149253779 scopus 로고    scopus 로고
    • Cross-domain learning from multiple sources: a consensus regularization perspective
    • Zhuang F, Luo P, Xiong H, Xiong Y (2010) Cross-domain learning from multiple sources: a consensus regularization perspective. IEEE Trans Knowl Data Eng 22(12):1664–1678
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.12 , pp. 1664-1678
    • Zhuang, F.1    Luo, P.2    Xiong, H.3    Xiong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.