메뉴 건너뛰기




Volumn 34, Issue 2, 2011, Pages 258-278

Hybrid ensemble approach for classification

Author keywords

Classifiers; Ensembles; Hybrid systems; Medical data classification; Neural networks

Indexed keywords

BENCHMARK DATABASE; BREAST CANCER; CLASSIFICATION ACCURACY; COMPARATIVE PERFORMANCE ANALYSIS; DIGITAL DATABASE; ENSEMBLES; KNOWLEDGE EXTRACTION; MEDICAL DATA; MEDICAL DATABASE; NOVEL TECHNIQUES; PARALLEL DATA; PARALLEL NEURAL NETWORKS; SCREENING MAMMOGRAM; WISCONSIN;

EID: 79956123704     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-009-0194-7     Document Type: Article
Times cited : (31)

References (60)
  • 2
    • 79956061931 scopus 로고    scopus 로고
    • What is the role of WHO as an intergovernmental organisation
    • World Health Organisation. Geneva, Switzerland at
    • Gulbinat W (1997) What is the role of WHO as an intergovernmental organisation In: The coordination of telematics in healthcare? World Health Organisation. Geneva, Switzerland at http:// www.hon.ch/libraray/papers/ gulbinat.html
    • (1997) The Coordination of Telematics in Healthcare?
    • Gulbinat, W.1
  • 3
    • 33947227459 scopus 로고    scopus 로고
    • An evolutionary approach to multiobjective clustering
    • DOI 10.1109/TEVC.2006.877146
    • Handl J, Knowles J (2007) An evolutionary approach to multiobjective clustering. IEEE Trans Evol Comput 56-76 (Pubitemid 46421668)
    • (2007) IEEE Transactions on Evolutionary Computation , vol.11 , Issue.1 , pp. 56-76
    • Handl, J.1    Knowles, J.2
  • 4
    • 63149100088 scopus 로고    scopus 로고
    • Combining advantages of new chromosome representation scheme and multiobjective genetic algorithms for better clustering
    • Korkmaz EE, Du J, Alhajj R, Barker K (2006) Combining advantages of new chromosome representation scheme and multiobjective genetic algorithms for better clustering. In: Proceedings of intelligent data analysis, pp 163-182
    • (2006) Proceedings of Intelligent Data Analysis , pp. 163-182
    • Korkmaz, E.E.1    Du, J.2    Alhajj, R.3    Barker, K.4
  • 11
    • 0034074630 scopus 로고    scopus 로고
    • Breast cancer diagnosis using self-organizing map for sonography
    • DOI 10.1016/S0301-5629(99)00156-8, PII S0301562999001568
    • Chen D, Chang RF, Huang YL (2000) Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med Biol 405-411 (Pubitemid 30204552)
    • (2000) Ultrasound in Medicine and Biology , vol.26 , Issue.3 , pp. 405-411
    • Chen, D.-R.1    Chang, R.-F.2    Huang, Y.-L.3
  • 12
    • 0034333656 scopus 로고    scopus 로고
    • Model selection for a medical diagnostic decision support system: A breast cancer detection case
    • West D, West V (2000) Model selection for a medical diagnostic decision support system: A breast cancer detection case. Artif Intell Med 183-204
    • (2000) Artif Intell Med , pp. 183-204
    • West, D.1    West, V.2
  • 13
    • 33751094712 scopus 로고    scopus 로고
    • Hybrid intelligent systems: Selecting attributes for soft-computing analysis
    • DOI 10.1109/COMPSAC.2005.87, 1510039, Proceedings of the 29th Annual International Computer Software and Applications Conference - Workshops and Fast Abstracts, COMPSAC 2005
    • Pattaraintakorn P, Cercone N, Naruedomkul K (2005) Hybrid intelligent systems: Selecting attributes for soft-computing analysis. In: 29th annual international computer software and applications conference (COMPSAC), pp 319-325 (Pubitemid 46744897)
    • (2005) Proceedings - International Computer Software and Applications Conference , vol.1 , pp. 319-325
    • Pattaraintakorn, P.1    Cereone, N.2    Naruedomkul, K.3
  • 15
    • 4544223395 scopus 로고    scopus 로고
    • Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
    • Hu X (2001) Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications. In: IEEE ICDM, pp 233-240
    • (2001) IEEE ICDM , pp. 233-240
    • Hu, X.1
  • 16
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • DOI 10.1093/bioinformatics/btg038
    • Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 1090-1099 (Pubitemid 36790010)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 17
    • 0037963197 scopus 로고    scopus 로고
    • Path-based clustering for grouping of smooth curves and texture segmentation
    • Fischer B, Buhmann JM (2003) Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans Pattern Anal Mach Intell 513-518
    • (2003) IEEE Trans Pattern Anal Mach Intell , pp. 513-518
    • Fischer, B.1    Buhmann, J.M.2
  • 18
    • 25944479013 scopus 로고    scopus 로고
    • Working Papers. SFB adaptive information systems and modeling in economics and management science. Institut für Information, Abt. Produktionsmanagement, Wien, Wirtschaftsuniv
    • Leisch F (1999) Bagged clustering. Working Papers. SFB adaptive information systems and modeling in economics and management science. Institut für Information, Abt. Produktionsmanagement, Wien, Wirtschaftsuniv
    • (1999) Bagged Clustering
    • Leisch, F.1
  • 19
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • In:Roli F, Kittler J (eds). LNCS
    • Fred ALN (2001) Finding consistent clusters in data partitions. In: Roli F, Kittler J (eds) Proc 3d Int workshop on multiple classifier systems. LNCS, vol 2364, pp 309-318
    • (2001) Proc 3d Int Workshop on Multiple Classifier Systems , vol.2364 , pp. 309-318
    • Fred, A.L.N.1
  • 27
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • DOI 10.1016/S0933-3657(99)00041-X, PII S093336579900041X
    • Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 205-219 (Pubitemid 30089529)
    • (2000) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 28
    • 79956070229 scopus 로고    scopus 로고
    • UCI repository of machine learning databases Available from
    • Blake CL, Merz CJ (1996) UCI repository of machine learning databases. Available from http://www.ics.uci.edu./~mlearn/ MLReporsitory.html
    • (1996)
    • Blake, C.L.1    Merz, C.J.2
  • 31
    • 57749171711 scopus 로고    scopus 로고
    • Breast cancer diagnosis using statistical neural networks
    • Çanakkale, Turkey
    • Kiyan T, Yildirim T (2003) Breast cancer diagnosis using statistical neural networks. In: XII TAINN symposium proceedings, Çanakkale, Turkey 754-761
    • (2003) XII TAINN symposium proceedings , pp. 754-761
    • Kiyan, T.1    Yildirim, T.2
  • 35
    • 41149157632 scopus 로고    scopus 로고
    • Neural classification of mass abnormalities with different types of features in digital mammography
    • Panchal R, Verma B (2006) Neural classification of mass abnormalities with different types of features in digital mammography. Int J Comput Intell Appl, pp 61-67
    • (2006) Int J Comput Intell Appl , pp. 61-67
    • Panchal, R.1    Verma, B.2
  • 36
    • 40649089896 scopus 로고    scopus 로고
    • A neural learning algorithm for the diagnosis of breast cancer
    • Canada. IEEE Press, New York
    • Verma B (2006) A neural learning algorithm for the diagnosis of breast cancer. IEEE international joint conference on neural networks, IJCNN'06, Canada. IEEE Press, New York, pp 10786-10791
    • (2006) IEEE International Joint Conference on Neural Networks, IJCNN'06 , pp. 10786-10791
    • Verma, B.1
  • 40
    • 1542317938 scopus 로고    scopus 로고
    • Classification of mammographic breast density using a combined classifier paradigm
    • Keir B, Sameer S (2002) Classification of mammographic breast density using a combined classifier paradigm. In: 4th international workshop on digital mammography, pp 177-180
    • (2002) 4th International Workshop on Digital Mammography , pp. 177-180
    • Keir, B.1    Sameer, S.2
  • 41
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • DOI 10.1016/S0167-8655(03)00047-3
    • Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn Lett 2195-2207 (Pubitemid 36911065)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 45
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • DOI 10.1016/S0933-3657(99)00019-6, PII S0933365799000196
    • Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 131-155 (Pubitemid 29474991)
    • (1999) Artificial Intelligence in Medicine , vol.17 , Issue.2 , pp. 131-155
    • Pe, C.A.1    Sipper, M.2
  • 47
    • 33746809067 scopus 로고    scopus 로고
    • Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing
    • DOI 10.1016/j.patcog.2006.05.028, PII S0031320306002445
    • Polat K, Gunes S, Tosun S (2006) Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted preprocessing. Pattern Recogn 2186-2193 (Pubitemid 44175467)
    • (2006) Pattern Recognition , vol.39 , Issue.11 , pp. 2186-2193
    • Polat, K.1    Gunes, S.2    Tosun, S.3
  • 48
    • 33746807501 scopus 로고    scopus 로고
    • A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia
    • DOI 10.1016/j.eswa.2005.09.019, PII S0957417405002125
    • Polat K, Ahan SS, Gunes S (2006) A new method for medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted preprocessing and application to ECG arrhythmia. Expert Syst Appl 264-269 (Pubitemid 44294436)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 264-269
    • Polat, K.1    Sahan, S.2    Gunes, S.3
  • 49
    • 0003213694 scopus 로고
    • An empirical comparison of pattern recognition, neural nets and machine learning classification methods
    • In: Shavlik JW, Dietterich TG (eds). Morgan Kauffmann, San Mateo
    • Weiss SM, Kapouleas I (1990) An empirical comparison of pattern recognition, neural nets and machine learning classification methods. In: Shavlik JW, Dietterich TG (eds) Readings in machine learning. Morgan Kauffmann, San Mateo
    • (1990) Readings in Machine Learning
    • Weiss, S.M.1    Kapouleas, I.2
  • 55
    • 34047104426 scopus 로고    scopus 로고
    • An ensemble-based incremental learning approach to data fusion
    • DOI 10.1109/TSMCB.2006.883873, Special Issue on Robot Learning by Observation, Demonstration and Imitation
    • Parikh D, Polikar R (2007) An ensemble-based incremental learning approach to data fusion. IEEE Trans Syst Man Cybern, Part B 37(2):437-450 (Pubitemid 46523231)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.2 , pp. 437-450
    • Parikh, D.1    Polikar, R.2
  • 58
    • 0031277463 scopus 로고    scopus 로고
    • Distributed learning, recognition, and prediction by ART and ARTMAP neural networks
    • DOI 10.1016/S0893-6080(97)00004-X, PII S089360809700004X
    • Carpenter GA (1997) Distributed learning, recognition, and prediction by ART and ARTMAP neural networks. Neural Netw 10(8):1473-1494 (Pubitemid 28260898)
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1473-1494
    • Carpenter, G.A.1
  • 60
    • 0025889915 scopus 로고
    • ARTMAP. Supervised real-time learning and classification of nonstationary data by a self-organizing neural network
    • DOI 10.1016/0893-6080(91)90012-T
    • Carpenter GA, Grossberg S, Reynolds J (1991) ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw 4(5):565-588 (Pubitemid 21710141)
    • (1991) Neural Networks , vol.4 , Issue.5 , pp. 565-588
    • Carpenter Gail, A.1    Grossberg Stephen2    Reynolds John, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.