메뉴 건너뛰기




Volumn 38, Issue 1, 2016, Pages 50-63

The dawn of active genetics

Author keywords

Active genetics; Copy cat element; Drosophila; ERACR; Gene drive; MCR; Mutagenic chain reaction

Indexed keywords

BIOSAFETY; CHROMOSOME; GENE AMPLIFICATION; GENE MUTATION; GENE THERAPY; GENETICS; INHERITANCE; MOSQUITO; MUTATION; YEAST; ALLELE; ANIMAL; CRISPR CAS SYSTEM; DROSOPHILA MELANOGASTER; FEMALE; GENE EDITING; MALE; PHENOTYPE; RECESSIVE GENE; TRANSGENIC ANIMAL;

EID: 84956762535     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500102     Document Type: Article
Times cited : (91)

References (76)
  • 1
    • 84920871112 scopus 로고    scopus 로고
    • The roles of CRISPR-Cas systems in adaptive immunity and beyond
    • Barrangou R. 2015. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32: 36-41.
    • (2015) Curr Opin Immunol , vol.32 , pp. 36-41
    • Barrangou, R.1
  • 2
    • 84892804564 scopus 로고    scopus 로고
    • Molecular mechanisms of CRISPR-mediated microbial immunity
    • Gasiunas G, Sinkunas T, Siksnys V. 2014. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71: 449-65.
    • (2014) Cell Mol Life Sci , vol.71 , pp. 449-465
    • Gasiunas, G.1    Sinkunas, T.2    Siksnys, V.3
  • 4
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30: 100-111.
    • (2015) Curr Opin Struct Biol , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 5
    • 84893709652 scopus 로고    scopus 로고
    • CRISPR/Cas9 and genome editing in Drosophila
    • Bassett AR, Liu JL. 2014. CRISPR/Cas9 and genome editing in Drosophila. J Genet Genom 41: 7-19.
    • (2014) J Genet Genom , vol.41 , pp. 7-19
    • Bassett, A.R.1    Liu, J.L.2
  • 6
    • 84904798083 scopus 로고    scopus 로고
    • CRISPR/Cas9 for genome editing: progress, implications and challenges
    • Zhang F, Wen Y, Guo X. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23: R40-6.
    • (2014) Hum Mol Genet , vol.23 , pp. R40-R46
    • Zhang, F.1    Wen, Y.2    Guo, X.3
  • 7
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-78.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 8
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347-55.
    • (2014) Nat Biotechnol , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 9
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the biologist's toolkit with CRISPR-Cas9
    • Sternberg SH, Doudna JA. 2015. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 58: 568-574.
    • (2015) Mol Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 10
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 11
    • 84925506654 scopus 로고    scopus 로고
    • Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes
    • Overcash JM, Aryan A, Myles KM, Adelman ZN. 2015. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 23: 31-42.
    • (2015) Chromosome Res , vol.23 , pp. 31-42
    • Overcash, J.M.1    Aryan, A.2    Myles, K.M.3    Adelman, Z.N.4
  • 13
    • 3242892765 scopus 로고    scopus 로고
    • DSB repair: the yeast paradigm
    • Aylon Y, Kupiec M. 2004. DSB repair: the yeast paradigm. DNA Repair (Amst) 3: 797-815.
    • (2004) DNA Repair (Amst) , vol.3 , pp. 797-815
    • Aylon, Y.1    Kupiec, M.2
  • 14
    • 84870766296 scopus 로고    scopus 로고
    • Repair of strand breaks by homologous recombination
    • Jasin M, Rothstein R. 2013. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5: a012740.
    • (2013) Cold Spring Harb Perspect Biol , vol.5 , pp. a012740
    • Jasin, M.1    Rothstein, R.2
  • 15
    • 84884925278 scopus 로고    scopus 로고
    • Highly improved gene targeting by germline-specific Cas9 expression in Drosophila
    • Kondo S, Ueda R. 2013. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195: 715-21.
    • (2013) Genetics , vol.195 , pp. 715-721
    • Kondo, S.1    Ueda, R.2
  • 16
    • 84904654756 scopus 로고    scopus 로고
    • Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
    • Port F, Chen HM, Lee T, Bullock SL. 2014. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA 111: E2967-76.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. E2967-E2976
    • Port, F.1    Chen, H.M.2    Lee, T.3    Bullock, S.L.4
  • 17
    • 84888372954 scopus 로고    scopus 로고
    • A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering
    • Sebo ZL, Lee HB, Peng Y, Guo Y. 2014. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 8: 52-7.
    • (2014) Fly (Austin) , vol.8 , pp. 52-57
    • Sebo, Z.L.1    Lee, H.B.2    Peng, Y.3    Guo, Y.4
  • 18
    • 84888108873 scopus 로고    scopus 로고
    • Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9
    • Ren X, Sun J, Housden BE, Hu Y, et al. 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA 110: 19012-7.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 19012-19017
    • Ren, X.1    Sun, J.2    Housden, B.E.3    Hu, Y.4
  • 19
    • 84887478758 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand
    • Gratz SJ, Wildonger J, Harrison MM, O'Connor-Giles KM. 2013. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 7: 249-55.
    • (2013) Fly (Austin) , vol.7 , pp. 249-255
    • Gratz, S.J.1    Wildonger, J.2    Harrison, M.M.3    O'Connor-Giles, K.M.4
  • 20
    • 84900458436 scopus 로고    scopus 로고
    • Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila
    • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, et al. 2014. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196: 961-71.
    • (2014) Genetics , vol.196 , pp. 961-971
    • Gratz, S.J.1    Ukken, F.P.2    Rubinstein, C.D.3    Thiede, G.4
  • 21
    • 84978984440 scopus 로고    scopus 로고
    • Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome
    • Yu Z, Chen H, Liu J, Zhang H, Yan Y, et al. 2014. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 3: 271-80.
    • (2014) Biol Open , vol.3 , pp. 271-280
    • Yu, Z.1    Chen, H.2    Liu, J.3    Zhang, H.4    Yan, Y.5
  • 22
    • 84928208828 scopus 로고    scopus 로고
    • The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
    • Gantz VM, Bier E. 2015. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348: 442-4.
    • (2015) Science , vol.348 , pp. 442-444
    • Gantz, V.M.1    Bier, E.2
  • 24
    • 85019787582 scopus 로고    scopus 로고
    • RNA-guided gene drives can efficiently bias inheritance in wild yeast
    • DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, et al. 2015. RNA-guided gene drives can efficiently bias inheritance in wild yeast. bioRxiv.
    • (2015) bioRxiv
    • DiCarlo, J.E.1    Chavez, A.2    Dietz, S.L.3    Esvelt, K.M.4
  • 25
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4: 220-8.
    • (2013) Cell Rep , vol.4 , pp. 220-228
    • Bassett, A.R.1    Tibbit, C.2    Ponting, C.P.3    Liu, J.L.4
  • 26
    • 84924410016 scopus 로고    scopus 로고
    • Concerning RNA-guided gene drives for the alteration of wild populations
    • Esvelt KM, Smidler AL, Catteruccia F, Church GM. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014: e03401.
    • (2014) eLife , vol.2014 , pp. e03401
    • Esvelt, K.M.1    Smidler, A.L.2    Catteruccia, F.3    Church, G.M.4
  • 27
    • 84896994662 scopus 로고    scopus 로고
    • Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster
    • Do AT, Brooks JT, Le Neveu MK, LaRocque JR. 2014. Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3 (Bethesda) 4: 425-32.
    • (2014) G3 (Bethesda) , vol.4 , pp. 425-432
    • Do, A.T.1    Brooks, J.T.2    Le Neveu, M.K.3    LaRocque, J.R.4
  • 28
    • 0014431860 scopus 로고
    • Possible use of translocations to fix desirable genes in insect pest populations
    • Curtis CF. 1968. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218: 368-9.
    • (1968) Nature , vol.218 , pp. 368-369
    • Curtis, C.F.1
  • 29
    • 12344263017 scopus 로고    scopus 로고
    • Gene drive systems in mosquitoes: rules of the road
    • James AA. 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21: 64-7.
    • (2005) Trends Parasitol , vol.21 , pp. 64-67
    • James, A.A.1
  • 30
    • 84900302189 scopus 로고    scopus 로고
    • Heritable strategies for controlling insect vectors of disease
    • Burt A. 2014. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc Lond B Biol Sci 369: 20130432.
    • (2014) Philos Trans R Soc Lond B Biol Sci , vol.369 , pp. 20130432
    • Burt, A.1
  • 32
    • 61449199821 scopus 로고    scopus 로고
    • The effect of gene drive on containment of transgenic mosquitoes
    • Marshall JM. 2009. The effect of gene drive on containment of transgenic mosquitoes. J Theor Biol 258: 250-65.
    • (2009) J Theor Biol , vol.258 , pp. 250-265
    • Marshall, J.M.1
  • 33
    • 33646882131 scopus 로고    scopus 로고
    • Gene drive systems for insect disease vectors
    • Sinkins SP, Gould F. 2006. Gene drive systems for insect disease vectors. Nat Rev Genet 7: 427-35.
    • (2006) Nat Rev Genet , vol.7 , pp. 427-435
    • Sinkins, S.P.1    Gould, F.2
  • 34
    • 84889810069 scopus 로고    scopus 로고
    • DNA transposon-based gene vehicles - scenes from an evolutionary drive
    • Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. 2013. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 20: 92.
    • (2013) J Biomed Sci , vol.20 , pp. 92
    • Skipper, K.A.1    Andersen, P.R.2    Sharma, N.3    Mikkelsen, J.G.4
  • 35
    • 79953311871 scopus 로고    scopus 로고
    • Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis
    • Ward CM, Su JT, Huang Y, Lloyd AL, et al. 2011. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 65: 1149-62.
    • (2011) Evolution , vol.65 , pp. 1149-1162
    • Ward, C.M.1    Su, J.T.2    Huang, Y.3    Lloyd, A.L.4
  • 36
    • 34247610283 scopus 로고    scopus 로고
    • A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila
    • Chen CH, Huang H, Ward CM, Su JT, et al. 2007. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316: 597-600.
    • (2007) Science , vol.316 , pp. 597-600
    • Chen, C.H.1    Huang, H.2    Ward, C.M.3    Su, J.T.4
  • 37
    • 84919639905 scopus 로고    scopus 로고
    • Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression
    • Akbari OS, Chen CH, Marshall JM, Huang H, et al. 2014. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth Biol 3: 915-28.
    • (2014) ACS Synth Biol , vol.3 , pp. 915-928
    • Akbari, O.S.1    Chen, C.H.2    Marshall, J.M.3    Huang, H.4
  • 38
    • 84896934810 scopus 로고    scopus 로고
    • Interplay of population genetics and dynamics in the genetic control of mosquitoes
    • Alphey N, Bonsall MB. 2014. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J R Soc Interface 11: 20131071.
    • (2014) J R Soc Interface , vol.11 , pp. 20131071
    • Alphey, N.1    Bonsall, M.B.2
  • 39
    • 80055066227 scopus 로고    scopus 로고
    • Requirements for effective malaria control with homing endonuclease genes
    • Deredec A, Godfray HC, Burt A. 2011. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA 108: E874-80.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. E874-E880
    • Deredec, A.1    Godfray, H.C.2    Burt, A.3
  • 40
    • 79955922770 scopus 로고    scopus 로고
    • A synthetic homing endonuclease-based gene drive system in the human malaria mosquito
    • Windbichler N, Menichelli M, Papathanos PA, Thyme SB, et al. 2011. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473: 212-5.
    • (2011) Nature , vol.473 , pp. 212-215
    • Windbichler, N.1    Menichelli, M.2    Papathanos, P.A.3    Thyme, S.B.4
  • 41
    • 84876769853 scopus 로고    scopus 로고
    • A synthetic gene drive system for local, reversible modification and suppression of insect populations
    • Akbari OS, Matzen KD, Marshall JM, Huang H, et al. 2013. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol 23: 671-7.
    • (2013) Curr Biol , vol.23 , pp. 671-677
    • Akbari, O.S.1    Matzen, K.D.2    Marshall, J.M.3    Huang, H.4
  • 42
    • 80055118009 scopus 로고    scopus 로고
    • Population replacement strategies for controlling vector populations and the use of Wolbachia pipientis for genetic drive
    • Rasgon J. 2007. Population replacement strategies for controlling vector populations and the use of Wolbachia pipientis for genetic drive. J Vis Exp 2007: 225.
    • (2007) J Vis Exp , vol.2007 , pp. 225
    • Rasgon, J.1
  • 43
    • 34548221335 scopus 로고    scopus 로고
    • Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis
    • Huang Y, Magori K, Lloyd AL, Gould F. 2007. Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis. Insect Biochem Mol Biol 37: 1054-63.
    • (2007) Insect Biochem Mol Biol , vol.37 , pp. 1054-1063
    • Huang, Y.1    Magori, K.2    Lloyd, A.L.3    Gould, F.4
  • 44
    • 3042805585 scopus 로고    scopus 로고
    • Use of Wolbachia to drive nuclear transgenes through insect populations
    • Sinkins SP, Godfray HC. 2004. Use of Wolbachia to drive nuclear transgenes through insect populations. Proc Biol Sci 271: 1421-6.
    • (2004) Proc Biol Sci , vol.271 , pp. 1421-1426
    • Sinkins, S.P.1    Godfray, H.C.2
  • 45
    • 0038027293 scopus 로고    scopus 로고
    • Site-specific selfish genes as tools for the control and genetic engineering of natural populations
    • Burt A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270: 921-8.
    • (2003) Proc Biol Sci , vol.270 , pp. 921-928
    • Burt, A.1
  • 46
    • 55749111397 scopus 로고    scopus 로고
    • The population genetics of using homing endonuclease genes in vector and pest management
    • Deredec A, Burt A, Godfray HC. 2008. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179: 2013-26.
    • (2008) Genetics , vol.179 , pp. 2013-2026
    • Deredec, A.1    Burt, A.2    Godfray, H.C.3
  • 47
    • 84890859516 scopus 로고    scopus 로고
    • Modelling the spatial spread of a homing endonuclease gene in a mosquito population
    • North A, Burt A, Godfray HC, Buckley Y. 2013. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J Appl Ecol 50: 1216-1225.
    • (2013) J Appl Ecol , vol.50 , pp. 1216-1225
    • North, A.1    Burt, A.2    Godfray, H.C.3    Buckley, Y.4
  • 48
    • 84907193791 scopus 로고    scopus 로고
    • Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak
    • Gire SK, Goba A, Andersen KG, Sealfon RS, et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345: 1369-72.
    • (2014) Science , vol.345 , pp. 1369-1372
    • Gire, S.K.1    Goba, A.2    Andersen, K.G.3    Sealfon, R.S.4
  • 49
    • 0037161738 scopus 로고    scopus 로고
    • Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite
    • Ito J, Ghosh A, Moreira LA, Wimmer EA, et al. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417: 452-5.
    • (2002) Nature , vol.417 , pp. 452-455
    • Ito, J.1    Ghosh, A.2    Moreira, L.A.3    Wimmer, E.A.4
  • 50
    • 84863944540 scopus 로고    scopus 로고
    • Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development
    • Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, et al. 2012. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci USA 109: E1922-30.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E1922-E1930
    • Isaacs, A.T.1    Jasinskiene, N.2    Tretiakov, M.3    Thiery, I.4
  • 51
    • 79955785238 scopus 로고    scopus 로고
    • Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi
    • Isaacs AT, Li F, Jasinskiene N, Chen X, et al. 2011. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog 7: e1002017.
    • (2011) PLoS Pathog , vol.7 , pp. e1002017
    • Isaacs, A.T.1    Li, F.2    Jasinskiene, N.3    Chen, X.4
  • 52
    • 84890820074 scopus 로고    scopus 로고
    • Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae
    • Li J, Wang X, Zhang G, Githure JI, et al. 2013. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc Natl Acad Sci USA 110: 20675-80.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 20675-20680
    • Li, J.1    Wang, X.2    Zhang, G.3    Githure, J.I.4
  • 53
    • 81255128898 scopus 로고    scopus 로고
    • Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles
    • Bryant B, Raikhel AS. 2011. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. PLoS ONE 6: e25502.
    • (2011) PLoS ONE , vol.6 , pp. e25502
    • Bryant, B.1    Raikhel, A.S.2
  • 54
    • 77957686131 scopus 로고    scopus 로고
    • Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes
    • Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, et al. 2010. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog 6: e1001003.
    • (2010) PLoS Pathog , vol.6 , pp. e1001003
    • Corby-Harris, V.1    Drexler, A.2    Watkins de Jong, L.3    Antonova, Y.4
  • 55
    • 77951562146 scopus 로고    scopus 로고
    • Transposable elements in natural populations of Drosophila melanogaster
    • Lee YC, Langley CH. 2010. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 365: 1219-28.
    • (2010) Philos Trans R Soc Lond B Biol Sci , vol.365 , pp. 1219-1228
    • Lee, Y.C.1    Langley, C.H.2
  • 56
    • 0034124187 scopus 로고    scopus 로고
    • Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster
    • Maside X, Assimacopoulos S, Charlesworth B. 2000. Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet Res 75: 275-84.
    • (2000) Genet Res , vol.75 , pp. 275-284
    • Maside, X.1    Assimacopoulos, S.2    Charlesworth, B.3
  • 57
    • 84880330155 scopus 로고    scopus 로고
    • HIV-1 eradication strategies: design and assessment
    • Siliciano JD, Siliciano RF. 2013. HIV-1 eradication strategies: design and assessment. Curr Opin HIV AIDS 8: 318-25.
    • (2013) Curr Opin HIV AIDS , vol.8 , pp. 318-325
    • Siliciano, J.D.1    Siliciano, R.F.2
  • 58
    • 80053186097 scopus 로고    scopus 로고
    • Coordination of DNA replication and recombination activities in the maintenance of genome stability
    • Maher RL, Branagan AM, Morrical SW. 2011. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J Cell Biochem 112: 2672-82.
    • (2011) J Cell Biochem , vol.112 , pp. 2672-2682
    • Maher, R.L.1    Branagan, A.M.2    Morrical, S.W.3
  • 59
    • 7244220162 scopus 로고    scopus 로고
    • DNA end resection, homologous recombination and DNA damage checkpoint activation require C DK1
    • Ira G, Pellicioli A, Balijja A, Wang X, et al. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require C DK1. Nature 431: 1011-7.
    • (2004) Nature , vol.431 , pp. 1011-1017
    • Ira, G.1    Pellicioli, A.2    Balijja, A.3    Wang, X.4
  • 60
    • 84876877091 scopus 로고    scopus 로고
    • A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
    • Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, et al. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49: 872-83.
    • (2013) Mol Cell , vol.49 , pp. 872-883
    • Escribano-Diaz, C.1    Orthwein, A.2    Fradet-Turcotte, A.3    Xing, M.4
  • 62
    • 84885075354 scopus 로고    scopus 로고
    • Therapeutics for HIV-1 reactivation from latency
    • Sgarbanti M, Battistini A. 2013. Therapeutics for HIV-1 reactivation from latency. Curr Opin Virol 3: 394-401.
    • (2013) Curr Opin Virol , vol.3 , pp. 394-401
    • Sgarbanti, M.1    Battistini, A.2
  • 63
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-71.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1    Gootenberg, J.S.2    Abudayyeh, O.O.3    Slaymaker, I.M.4
  • 64
    • 84941636993 scopus 로고    scopus 로고
    • A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine
    • Heuckmann JM, Thomas RK. 2015. A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine. Ann Oncol 26: 1830-7.
    • (2015) Ann Oncol , vol.26 , pp. 1830-1837
    • Heuckmann, J.M.1    Thomas, R.K.2
  • 65
    • 79958835059 scopus 로고    scopus 로고
    • Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology
    • Cronin M, Ross JS. 2011. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5: 293-305.
    • (2011) Biomark Med , vol.5 , pp. 293-305
    • Cronin, M.1    Ross, J.S.2
  • 66
    • 84901846866 scopus 로고    scopus 로고
    • Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster
    • Venken KJ, Bellen HJ. 2014. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68: 15-28.
    • (2014) Methods , vol.68 , pp. 15-28
    • Venken, K.J.1    Bellen, H.J.2
  • 67
    • 84860137072 scopus 로고    scopus 로고
    • Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase
    • Venken KJ, Bellen HJ. 2012. Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase. Methods Mol Biol 859: 203-28.
    • (2012) Methods Mol Biol , vol.859 , pp. 203-228
    • Venken, K.J.1    Bellen, H.J.2
  • 68
    • 84895832944 scopus 로고    scopus 로고
    • Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
    • Fonfara I, Le Rhun A, Chylinski K, Makarova KS, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42: 2577-90.
    • (2014) Nucleic Acids Res , vol.42 , pp. 2577-2590
    • Fonfara, I.1    Le Rhun, A.2    Chylinski, K.3    Makarova, K.S.4
  • 70
    • 84929377450 scopus 로고    scopus 로고
    • Regulate gene editing in wild animals
    • Lunshof J. 2015. Regulate gene editing in wild animals. Nature 521: 127.
    • (2015) Nature , vol.521 , pp. 127
    • Lunshof, J.1
  • 71
    • 84940502877 scopus 로고    scopus 로고
    • Safeguarding gene drive experiments in the laboratory
    • Akbari BO, Bellen HJ, Bier E, Bullock SL, et al. 2015. Safeguarding gene drive experiments in the laboratory. Science 349: 927-9.
    • (2015) Science , vol.349 , pp. 927-929
    • Akbari, B.O.1    Bellen, H.J.2    Bier, E.3    Bullock, S.L.4
  • 72
    • 84897456029 scopus 로고    scopus 로고
    • A regulatory structure for working with genetically modified mosquitoes: lessons from Mexico
    • Ramsey JM, Bond JG, Macotela ME, Facchinelli L, et al. 2014. A regulatory structure for working with genetically modified mosquitoes: lessons from Mexico. PLoS Negl Trop Dis 8: e2623.
    • (2014) PLoS Negl Trop Dis , vol.8 , pp. e2623
    • Ramsey, J.M.1    Bond, J.G.2    Macotela, M.E.3    Facchinelli, L.4
  • 73
    • 84883305437 scopus 로고    scopus 로고
    • Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus
    • Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3: 2510.
    • (2013) Sci Rep , vol.3 , pp. 2510
    • Ebina, H.1    Misawa, N.2    Kanemura, Y.3    Koyanagi, Y.4
  • 75
    • 85019820155 scopus 로고    scopus 로고
    • Biosafety in Microbiological and Biomedical Laboratories 5th Edition.
    • Health USDoHaHSPHSCfDCaPNIo. 2009. Biosafety in Microbiological and Biomedical Laboratories 5th Edition. HHS Publication No. (CDC) 21-1112.
    • (2009) HHS Publication No. (CDC) 21-1112.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.