-
1
-
-
84920871112
-
The roles of CRISPR-Cas systems in adaptive immunity and beyond
-
Barrangou R. 2015. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32: 36-41.
-
(2015)
Curr Opin Immunol
, vol.32
, pp. 36-41
-
-
Barrangou, R.1
-
2
-
-
84892804564
-
Molecular mechanisms of CRISPR-mediated microbial immunity
-
Gasiunas G, Sinkunas T, Siksnys V. 2014. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71: 449-65.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 449-465
-
-
Gasiunas, G.1
Sinkunas, T.2
Siksnys, V.3
-
4
-
-
84923279931
-
The structural biology of CRISPR-Cas systems
-
Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30: 100-111.
-
(2015)
Curr Opin Struct Biol
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
5
-
-
84893709652
-
CRISPR/Cas9 and genome editing in Drosophila
-
Bassett AR, Liu JL. 2014. CRISPR/Cas9 and genome editing in Drosophila. J Genet Genom 41: 7-19.
-
(2014)
J Genet Genom
, vol.41
, pp. 7-19
-
-
Bassett, A.R.1
Liu, J.L.2
-
6
-
-
84904798083
-
CRISPR/Cas9 for genome editing: progress, implications and challenges
-
Zhang F, Wen Y, Guo X. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23: R40-6.
-
(2014)
Hum Mol Genet
, vol.23
, pp. R40-R46
-
-
Zhang, F.1
Wen, Y.2
Guo, X.3
-
7
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-78.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
8
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32: 347-55.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
9
-
-
84929666410
-
Expanding the biologist's toolkit with CRISPR-Cas9
-
Sternberg SH, Doudna JA. 2015. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 58: 568-574.
-
(2015)
Mol Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
10
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
11
-
-
84925506654
-
Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes
-
Overcash JM, Aryan A, Myles KM, Adelman ZN. 2015. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 23: 31-42.
-
(2015)
Chromosome Res
, vol.23
, pp. 31-42
-
-
Overcash, J.M.1
Aryan, A.2
Myles, K.M.3
Adelman, Z.N.4
-
13
-
-
3242892765
-
DSB repair: the yeast paradigm
-
Aylon Y, Kupiec M. 2004. DSB repair: the yeast paradigm. DNA Repair (Amst) 3: 797-815.
-
(2004)
DNA Repair (Amst)
, vol.3
, pp. 797-815
-
-
Aylon, Y.1
Kupiec, M.2
-
14
-
-
84870766296
-
Repair of strand breaks by homologous recombination
-
Jasin M, Rothstein R. 2013. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5: a012740.
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, pp. a012740
-
-
Jasin, M.1
Rothstein, R.2
-
15
-
-
84884925278
-
Highly improved gene targeting by germline-specific Cas9 expression in Drosophila
-
Kondo S, Ueda R. 2013. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195: 715-21.
-
(2013)
Genetics
, vol.195
, pp. 715-721
-
-
Kondo, S.1
Ueda, R.2
-
16
-
-
84904654756
-
Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
-
Port F, Chen HM, Lee T, Bullock SL. 2014. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA 111: E2967-76.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E2967-E2976
-
-
Port, F.1
Chen, H.M.2
Lee, T.3
Bullock, S.L.4
-
17
-
-
84888372954
-
A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering
-
Sebo ZL, Lee HB, Peng Y, Guo Y. 2014. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 8: 52-7.
-
(2014)
Fly (Austin)
, vol.8
, pp. 52-57
-
-
Sebo, Z.L.1
Lee, H.B.2
Peng, Y.3
Guo, Y.4
-
18
-
-
84888108873
-
Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9
-
Ren X, Sun J, Housden BE, Hu Y, et al. 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA 110: 19012-7.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 19012-19017
-
-
Ren, X.1
Sun, J.2
Housden, B.E.3
Hu, Y.4
-
19
-
-
84887478758
-
CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand
-
Gratz SJ, Wildonger J, Harrison MM, O'Connor-Giles KM. 2013. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 7: 249-55.
-
(2013)
Fly (Austin)
, vol.7
, pp. 249-255
-
-
Gratz, S.J.1
Wildonger, J.2
Harrison, M.M.3
O'Connor-Giles, K.M.4
-
20
-
-
84900458436
-
Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila
-
Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, et al. 2014. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196: 961-71.
-
(2014)
Genetics
, vol.196
, pp. 961-971
-
-
Gratz, S.J.1
Ukken, F.P.2
Rubinstein, C.D.3
Thiede, G.4
-
21
-
-
84978984440
-
Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome
-
Yu Z, Chen H, Liu J, Zhang H, Yan Y, et al. 2014. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 3: 271-80.
-
(2014)
Biol Open
, vol.3
, pp. 271-280
-
-
Yu, Z.1
Chen, H.2
Liu, J.3
Zhang, H.4
Yan, Y.5
-
22
-
-
84928208828
-
The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
-
Gantz VM, Bier E. 2015. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348: 442-4.
-
(2015)
Science
, vol.348
, pp. 442-444
-
-
Gantz, V.M.1
Bier, E.2
-
23
-
-
84949220605
-
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito
-
Gantz V, Jasinskiene N, Tatarenkova O, Fazekas A, et al. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito, Anohpeles stepensi. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1521077112.
-
(2015)
Anohpeles stepensi. Proc Natl Acad Sci USA
-
-
Gantz, V.1
Jasinskiene, N.2
Tatarenkova, O.3
Fazekas, A.4
-
24
-
-
85019787582
-
RNA-guided gene drives can efficiently bias inheritance in wild yeast
-
DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, et al. 2015. RNA-guided gene drives can efficiently bias inheritance in wild yeast. bioRxiv.
-
(2015)
bioRxiv
-
-
DiCarlo, J.E.1
Chavez, A.2
Dietz, S.L.3
Esvelt, K.M.4
-
25
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4: 220-8.
-
(2013)
Cell Rep
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
Tibbit, C.2
Ponting, C.P.3
Liu, J.L.4
-
26
-
-
84924410016
-
Concerning RNA-guided gene drives for the alteration of wild populations
-
Esvelt KM, Smidler AL, Catteruccia F, Church GM. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014: e03401.
-
(2014)
eLife
, vol.2014
, pp. e03401
-
-
Esvelt, K.M.1
Smidler, A.L.2
Catteruccia, F.3
Church, G.M.4
-
27
-
-
84896994662
-
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster
-
Do AT, Brooks JT, Le Neveu MK, LaRocque JR. 2014. Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3 (Bethesda) 4: 425-32.
-
(2014)
G3 (Bethesda)
, vol.4
, pp. 425-432
-
-
Do, A.T.1
Brooks, J.T.2
Le Neveu, M.K.3
LaRocque, J.R.4
-
28
-
-
0014431860
-
Possible use of translocations to fix desirable genes in insect pest populations
-
Curtis CF. 1968. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218: 368-9.
-
(1968)
Nature
, vol.218
, pp. 368-369
-
-
Curtis, C.F.1
-
29
-
-
12344263017
-
Gene drive systems in mosquitoes: rules of the road
-
James AA. 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21: 64-7.
-
(2005)
Trends Parasitol
, vol.21
, pp. 64-67
-
-
James, A.A.1
-
30
-
-
84900302189
-
Heritable strategies for controlling insect vectors of disease
-
Burt A. 2014. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc Lond B Biol Sci 369: 20130432.
-
(2014)
Philos Trans R Soc Lond B Biol Sci
, vol.369
, pp. 20130432
-
-
Burt, A.1
-
31
-
-
84879534242
-
Genetic control of Aedes mosquitoes
-
Alphey L, McKemey A, Nimmo D, Neira Oviedo M, et al. 2013. Genetic control of Aedes mosquitoes. Pathog Glob Health 107: 170-9.
-
(2013)
Pathog Glob Health
, vol.107
, pp. 170-179
-
-
Alphey, L.1
McKemey, A.2
Nimmo, D.3
Neira Oviedo, M.4
-
32
-
-
61449199821
-
The effect of gene drive on containment of transgenic mosquitoes
-
Marshall JM. 2009. The effect of gene drive on containment of transgenic mosquitoes. J Theor Biol 258: 250-65.
-
(2009)
J Theor Biol
, vol.258
, pp. 250-265
-
-
Marshall, J.M.1
-
33
-
-
33646882131
-
Gene drive systems for insect disease vectors
-
Sinkins SP, Gould F. 2006. Gene drive systems for insect disease vectors. Nat Rev Genet 7: 427-35.
-
(2006)
Nat Rev Genet
, vol.7
, pp. 427-435
-
-
Sinkins, S.P.1
Gould, F.2
-
35
-
-
79953311871
-
Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis
-
Ward CM, Su JT, Huang Y, Lloyd AL, et al. 2011. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 65: 1149-62.
-
(2011)
Evolution
, vol.65
, pp. 1149-1162
-
-
Ward, C.M.1
Su, J.T.2
Huang, Y.3
Lloyd, A.L.4
-
36
-
-
34247610283
-
A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila
-
Chen CH, Huang H, Ward CM, Su JT, et al. 2007. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316: 597-600.
-
(2007)
Science
, vol.316
, pp. 597-600
-
-
Chen, C.H.1
Huang, H.2
Ward, C.M.3
Su, J.T.4
-
37
-
-
84919639905
-
Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression
-
Akbari OS, Chen CH, Marshall JM, Huang H, et al. 2014. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth Biol 3: 915-28.
-
(2014)
ACS Synth Biol
, vol.3
, pp. 915-928
-
-
Akbari, O.S.1
Chen, C.H.2
Marshall, J.M.3
Huang, H.4
-
38
-
-
84896934810
-
Interplay of population genetics and dynamics in the genetic control of mosquitoes
-
Alphey N, Bonsall MB. 2014. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J R Soc Interface 11: 20131071.
-
(2014)
J R Soc Interface
, vol.11
, pp. 20131071
-
-
Alphey, N.1
Bonsall, M.B.2
-
39
-
-
80055066227
-
Requirements for effective malaria control with homing endonuclease genes
-
Deredec A, Godfray HC, Burt A. 2011. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA 108: E874-80.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. E874-E880
-
-
Deredec, A.1
Godfray, H.C.2
Burt, A.3
-
40
-
-
79955922770
-
A synthetic homing endonuclease-based gene drive system in the human malaria mosquito
-
Windbichler N, Menichelli M, Papathanos PA, Thyme SB, et al. 2011. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473: 212-5.
-
(2011)
Nature
, vol.473
, pp. 212-215
-
-
Windbichler, N.1
Menichelli, M.2
Papathanos, P.A.3
Thyme, S.B.4
-
41
-
-
84876769853
-
A synthetic gene drive system for local, reversible modification and suppression of insect populations
-
Akbari OS, Matzen KD, Marshall JM, Huang H, et al. 2013. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol 23: 671-7.
-
(2013)
Curr Biol
, vol.23
, pp. 671-677
-
-
Akbari, O.S.1
Matzen, K.D.2
Marshall, J.M.3
Huang, H.4
-
42
-
-
80055118009
-
Population replacement strategies for controlling vector populations and the use of Wolbachia pipientis for genetic drive
-
Rasgon J. 2007. Population replacement strategies for controlling vector populations and the use of Wolbachia pipientis for genetic drive. J Vis Exp 2007: 225.
-
(2007)
J Vis Exp
, vol.2007
, pp. 225
-
-
Rasgon, J.1
-
43
-
-
34548221335
-
Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis
-
Huang Y, Magori K, Lloyd AL, Gould F. 2007. Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis. Insect Biochem Mol Biol 37: 1054-63.
-
(2007)
Insect Biochem Mol Biol
, vol.37
, pp. 1054-1063
-
-
Huang, Y.1
Magori, K.2
Lloyd, A.L.3
Gould, F.4
-
44
-
-
3042805585
-
Use of Wolbachia to drive nuclear transgenes through insect populations
-
Sinkins SP, Godfray HC. 2004. Use of Wolbachia to drive nuclear transgenes through insect populations. Proc Biol Sci 271: 1421-6.
-
(2004)
Proc Biol Sci
, vol.271
, pp. 1421-1426
-
-
Sinkins, S.P.1
Godfray, H.C.2
-
45
-
-
0038027293
-
Site-specific selfish genes as tools for the control and genetic engineering of natural populations
-
Burt A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270: 921-8.
-
(2003)
Proc Biol Sci
, vol.270
, pp. 921-928
-
-
Burt, A.1
-
46
-
-
55749111397
-
The population genetics of using homing endonuclease genes in vector and pest management
-
Deredec A, Burt A, Godfray HC. 2008. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179: 2013-26.
-
(2008)
Genetics
, vol.179
, pp. 2013-2026
-
-
Deredec, A.1
Burt, A.2
Godfray, H.C.3
-
47
-
-
84890859516
-
Modelling the spatial spread of a homing endonuclease gene in a mosquito population
-
North A, Burt A, Godfray HC, Buckley Y. 2013. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J Appl Ecol 50: 1216-1225.
-
(2013)
J Appl Ecol
, vol.50
, pp. 1216-1225
-
-
North, A.1
Burt, A.2
Godfray, H.C.3
Buckley, Y.4
-
48
-
-
84907193791
-
Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak
-
Gire SK, Goba A, Andersen KG, Sealfon RS, et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345: 1369-72.
-
(2014)
Science
, vol.345
, pp. 1369-1372
-
-
Gire, S.K.1
Goba, A.2
Andersen, K.G.3
Sealfon, R.S.4
-
49
-
-
0037161738
-
Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite
-
Ito J, Ghosh A, Moreira LA, Wimmer EA, et al. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417: 452-5.
-
(2002)
Nature
, vol.417
, pp. 452-455
-
-
Ito, J.1
Ghosh, A.2
Moreira, L.A.3
Wimmer, E.A.4
-
50
-
-
84863944540
-
Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development
-
Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, et al. 2012. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci USA 109: E1922-30.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E1922-E1930
-
-
Isaacs, A.T.1
Jasinskiene, N.2
Tretiakov, M.3
Thiery, I.4
-
51
-
-
79955785238
-
Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi
-
Isaacs AT, Li F, Jasinskiene N, Chen X, et al. 2011. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog 7: e1002017.
-
(2011)
PLoS Pathog
, vol.7
, pp. e1002017
-
-
Isaacs, A.T.1
Li, F.2
Jasinskiene, N.3
Chen, X.4
-
52
-
-
84890820074
-
Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae
-
Li J, Wang X, Zhang G, Githure JI, et al. 2013. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc Natl Acad Sci USA 110: 20675-80.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 20675-20680
-
-
Li, J.1
Wang, X.2
Zhang, G.3
Githure, J.I.4
-
53
-
-
81255128898
-
Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles
-
Bryant B, Raikhel AS. 2011. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. PLoS ONE 6: e25502.
-
(2011)
PLoS ONE
, vol.6
, pp. e25502
-
-
Bryant, B.1
Raikhel, A.S.2
-
54
-
-
77957686131
-
Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes
-
Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, et al. 2010. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog 6: e1001003.
-
(2010)
PLoS Pathog
, vol.6
, pp. e1001003
-
-
Corby-Harris, V.1
Drexler, A.2
Watkins de Jong, L.3
Antonova, Y.4
-
55
-
-
77951562146
-
Transposable elements in natural populations of Drosophila melanogaster
-
Lee YC, Langley CH. 2010. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 365: 1219-28.
-
(2010)
Philos Trans R Soc Lond B Biol Sci
, vol.365
, pp. 1219-1228
-
-
Lee, Y.C.1
Langley, C.H.2
-
56
-
-
0034124187
-
Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster
-
Maside X, Assimacopoulos S, Charlesworth B. 2000. Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet Res 75: 275-84.
-
(2000)
Genet Res
, vol.75
, pp. 275-284
-
-
Maside, X.1
Assimacopoulos, S.2
Charlesworth, B.3
-
57
-
-
84880330155
-
HIV-1 eradication strategies: design and assessment
-
Siliciano JD, Siliciano RF. 2013. HIV-1 eradication strategies: design and assessment. Curr Opin HIV AIDS 8: 318-25.
-
(2013)
Curr Opin HIV AIDS
, vol.8
, pp. 318-325
-
-
Siliciano, J.D.1
Siliciano, R.F.2
-
58
-
-
80053186097
-
Coordination of DNA replication and recombination activities in the maintenance of genome stability
-
Maher RL, Branagan AM, Morrical SW. 2011. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J Cell Biochem 112: 2672-82.
-
(2011)
J Cell Biochem
, vol.112
, pp. 2672-2682
-
-
Maher, R.L.1
Branagan, A.M.2
Morrical, S.W.3
-
59
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require C DK1
-
Ira G, Pellicioli A, Balijja A, Wang X, et al. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require C DK1. Nature 431: 1011-7.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
-
60
-
-
84876877091
-
A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
-
Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, et al. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49: 872-83.
-
(2013)
Mol Cell
, vol.49
, pp. 872-883
-
-
Escribano-Diaz, C.1
Orthwein, A.2
Fradet-Turcotte, A.3
Xing, M.4
-
62
-
-
84885075354
-
Therapeutics for HIV-1 reactivation from latency
-
Sgarbanti M, Battistini A. 2013. Therapeutics for HIV-1 reactivation from latency. Curr Opin Virol 3: 394-401.
-
(2013)
Curr Opin Virol
, vol.3
, pp. 394-401
-
-
Sgarbanti, M.1
Battistini, A.2
-
63
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-71.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
-
64
-
-
84941636993
-
A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine
-
Heuckmann JM, Thomas RK. 2015. A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine. Ann Oncol 26: 1830-7.
-
(2015)
Ann Oncol
, vol.26
, pp. 1830-1837
-
-
Heuckmann, J.M.1
Thomas, R.K.2
-
65
-
-
79958835059
-
Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology
-
Cronin M, Ross JS. 2011. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5: 293-305.
-
(2011)
Biomark Med
, vol.5
, pp. 293-305
-
-
Cronin, M.1
Ross, J.S.2
-
66
-
-
84901846866
-
Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster
-
Venken KJ, Bellen HJ. 2014. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68: 15-28.
-
(2014)
Methods
, vol.68
, pp. 15-28
-
-
Venken, K.J.1
Bellen, H.J.2
-
67
-
-
84860137072
-
Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase
-
Venken KJ, Bellen HJ. 2012. Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase. Methods Mol Biol 859: 203-28.
-
(2012)
Methods Mol Biol
, vol.859
, pp. 203-228
-
-
Venken, K.J.1
Bellen, H.J.2
-
68
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42: 2577-90.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
Le Rhun, A.2
Chylinski, K.3
Makarova, K.S.4
-
69
-
-
84905914560
-
Biotechnology. Regulating gene drives
-
Oye KA, Esvelt K, Appleton E, Catteruccia F, et al. 2014. Biotechnology. Regulating gene drives. Science 345: 626-8.
-
(2014)
Science
, vol.345
, pp. 626-628
-
-
Oye, K.A.1
Esvelt, K.2
Appleton, E.3
Catteruccia, F.4
-
70
-
-
84929377450
-
Regulate gene editing in wild animals
-
Lunshof J. 2015. Regulate gene editing in wild animals. Nature 521: 127.
-
(2015)
Nature
, vol.521
, pp. 127
-
-
Lunshof, J.1
-
71
-
-
84940502877
-
Safeguarding gene drive experiments in the laboratory
-
Akbari BO, Bellen HJ, Bier E, Bullock SL, et al. 2015. Safeguarding gene drive experiments in the laboratory. Science 349: 927-9.
-
(2015)
Science
, vol.349
, pp. 927-929
-
-
Akbari, B.O.1
Bellen, H.J.2
Bier, E.3
Bullock, S.L.4
-
72
-
-
84897456029
-
A regulatory structure for working with genetically modified mosquitoes: lessons from Mexico
-
Ramsey JM, Bond JG, Macotela ME, Facchinelli L, et al. 2014. A regulatory structure for working with genetically modified mosquitoes: lessons from Mexico. PLoS Negl Trop Dis 8: e2623.
-
(2014)
PLoS Negl Trop Dis
, vol.8
, pp. e2623
-
-
Ramsey, J.M.1
Bond, J.G.2
Macotela, M.E.3
Facchinelli, L.4
-
73
-
-
84883305437
-
Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus
-
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3: 2510.
-
(2013)
Sci Rep
, vol.3
, pp. 2510
-
-
Ebina, H.1
Misawa, N.2
Kanemura, Y.3
Koyanagi, Y.4
-
75
-
-
85019820155
-
Biosafety in Microbiological and Biomedical Laboratories 5th Edition.
-
Health USDoHaHSPHSCfDCaPNIo. 2009. Biosafety in Microbiological and Biomedical Laboratories 5th Edition. HHS Publication No. (CDC) 21-1112.
-
(2009)
HHS Publication No. (CDC) 21-1112.
-
-
|