-
1
-
-
84943348625
-
Architectural proteins, transcription, and the three-dimensional organization of the genome
-
Cubeñas-Potts C., Corces V.G. Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett 2015, 589:2923-2930.
-
(2015)
FEBS Lett
, vol.589
, pp. 2923-2930
-
-
Cubeñas-Potts, C.1
Corces, V.G.2
-
3
-
-
84930091577
-
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
-
Lupiáñez D.G., Kraft K., Heinrich V., Krawitz P., Brancati F., Klopocki E., Horn D., Kayserili H., Opitz J.M., Laxova R., et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 2015, 161:1012-1025.
-
(2015)
Cell
, vol.161
, pp. 1012-1025
-
-
Lupiáñez, D.G.1
Kraft, K.2
Heinrich, V.3
Krawitz, P.4
Brancati, F.5
Klopocki, E.6
Horn, D.7
Kayserili, H.8
Opitz, J.M.9
Laxova, R.10
-
4
-
-
84928206081
-
Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing
-
Li L., Lyu X., Hou C., Takenaka N., Nguyen H.Q., Ong C.-T., Cubeñas-Potts C., Hu M., Lei E.P., Bosco G., et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell 2015, 58:216-231.
-
(2015)
Mol Cell
, vol.58
, pp. 216-231
-
-
Li, L.1
Lyu, X.2
Hou, C.3
Takenaka, N.4
Nguyen, H.Q.5
Ong, C.-T.6
Cubeñas-Potts, C.7
Hu, M.8
Lei, E.P.9
Bosco, G.10
-
5
-
-
84887852466
-
Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming
-
Apostolou E., Ferrari F., Walsh R.M., Bar-Nur O., Stadtfeld M., Cheloufi S., Stuart H.T., Polo J.M., Ohsumi T.K., Borowsky M.L., et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 2013, 12:699-712.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 699-712
-
-
Apostolou, E.1
Ferrari, F.2
Walsh, R.M.3
Bar-Nur, O.4
Stadtfeld, M.5
Cheloufi, S.6
Stuart, H.T.7
Polo, J.M.8
Ohsumi, T.K.9
Borowsky, M.L.10
-
6
-
-
77952744854
-
A three-dimensional model of the yeast genome
-
Duan Z., Andronescu M., Schutz K., McIlwain S., Kim Y.J., Lee C., Shendure J., Fields S., Blau C.A., Noble W.S. A three-dimensional model of the yeast genome. Nature 2010, 465:363-367.
-
(2010)
Nature
, vol.465
, pp. 363-367
-
-
Duan, Z.1
Andronescu, M.2
Schutz, K.3
McIlwain, S.4
Kim, Y.J.5
Lee, C.6
Shendure, J.7
Fields, S.8
Blau, C.A.9
Noble, W.S.10
-
7
-
-
84921685857
-
Genome-wide Hi--C Analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis
-
Feng S., Cokus S.J., Schubert V., Zhai J., Pellegrini M., Jacobsen S.E. Genome-wide Hi--C Analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 2014, 55:694-707.
-
(2014)
Mol Cell
, vol.55
, pp. 694-707
-
-
Feng, S.1
Cokus, S.J.2
Schubert, V.3
Zhai, J.4
Pellegrini, M.5
Jacobsen, S.E.6
-
8
-
-
84921643810
-
Hi-C analysis in Arabidopsis identifies the KNOT, a structure with Similarities to the flamenco locus of Drosophila
-
Grob S., Schmid M.W., Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with Similarities to the flamenco locus of Drosophila. Mol Cell 2014, 55:678-693.
-
(2014)
Mol Cell
, vol.55
, pp. 678-693
-
-
Grob, S.1
Schmid, M.W.2
Grossniklaus, U.3
-
9
-
-
84922379324
-
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana
-
Wang C., Liu C., Roqueiro D., Grimm D., Schwab R., Becker C., Lanz C., Weigel D. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 2015, 25:246-256.
-
(2015)
Genome Res
, vol.25
, pp. 246-256
-
-
Wang, C.1
Liu, C.2
Roqueiro, D.3
Grimm, D.4
Schwab, R.5
Becker, C.6
Lanz, C.7
Weigel, D.8
-
10
-
-
84887620842
-
A high-resolution map of the three-dimensional chromatin interactome in human cells
-
Jin F., Li Y., Dixon J.R., Selvaraj S., Ye Z., Lee A.Y., Yen C-A., Schmitt A.D., Espinoza C.A., Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013, 10.1038/nature12644.
-
(2013)
Nature
-
-
Jin, F.1
Li, Y.2
Dixon, J.R.3
Selvaraj, S.4
Ye, Z.5
Lee, A.Y.6
Yen, C.-A.7
Schmitt, A.D.8
Espinoza, C.A.9
Ren, B.10
-
11
-
-
84856747483
-
Three-dimensional folding and functional organization principles of the Drosophila genome
-
Sexton T., Yaffe E., Kenigsberg E., Bantignies F., Leblanc B., Hoichman M., Parrinello H., Tanay A., Cavalli G. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458-472.
-
(2012)
Cell
, vol.148
, pp. 458-472
-
-
Sexton, T.1
Yaffe, E.2
Kenigsberg, E.3
Bantignies, F.4
Leblanc, B.5
Hoichman, M.6
Parrinello, H.7
Tanay, A.8
Cavalli, G.9
-
12
-
-
84936945257
-
Condensin-driven remodelling of X chromosome topology during dosage compensation
-
Crane E., Bian Q., McCord R.P., Lajoie B.R., Wheeler B.S., Ralston E.J., Uzawa S., Dekker J., Meyer B.J. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 2015, 523:240-244.
-
(2015)
Nature
, vol.523
, pp. 240-244
-
-
Crane, E.1
Bian, Q.2
McCord, R.P.3
Lajoie, B.R.4
Wheeler, B.S.5
Ralston, E.J.6
Uzawa, S.7
Dekker, J.8
Meyer, B.J.9
-
13
-
-
84940473396
-
An overview of genome organization and how we got there: from FISH to Hi-C
-
Fraser J., Williamson I., Bickmore W.A., Dostie J. An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev MMBR 2015, 79:347-372.
-
(2015)
Microbiol Mol Biol Rev MMBR
, vol.79
, pp. 347-372
-
-
Fraser, J.1
Williamson, I.2
Bickmore, W.A.3
Dostie, J.4
-
14
-
-
84923169410
-
Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe
-
Mizuguchi T., Fudenberg G., Mehta S., Belton J.-M., Taneja N., Folco H.D., FitzGerald P., Dekker J., Mirny L., Barrowman J., et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 2014, 516:432-435.
-
(2014)
Nature
, vol.516
, pp. 432-435
-
-
Mizuguchi, T.1
Fudenberg, G.2
Mehta, S.3
Belton, J.-M.4
Taneja, N.5
Folco, H.D.6
FitzGerald, P.7
Dekker, J.8
Mirny, L.9
Barrowman, J.10
-
15
-
-
84934435162
-
Mapping nucleosome resolution chromosome folding in yeast by micro-C
-
Hsieh T.-H.S., Weiner A., Lajoie B., Dekker J., Friedman N., Rando O.J. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 2015, 162:108-119.
-
(2015)
Cell
, vol.162
, pp. 108-119
-
-
Hsieh, T.-H.S.1
Weiner, A.2
Lajoie, B.3
Dekker, J.4
Friedman, N.5
Rando, O.J.6
-
16
-
-
84919949716
-
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
-
Rao S.S.P., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159:1665-1680.
-
(2014)
Cell
, vol.159
, pp. 1665-1680
-
-
Rao, S.S.P.1
Huntley, M.H.2
Durand, N.C.3
Stamenova, E.K.4
Bochkov, I.D.5
Robinson, J.T.6
Sanborn, A.L.7
Machol, I.8
Omer, A.D.9
Lander, E.S.10
-
17
-
-
84900425608
-
Identification of alternative topological domains in chromatin
-
Filippova D., Patro R., Duggal G., Kingsford C. Identification of alternative topological domains in chromatin. Algorithms Mol Biol 2014, 9:14.
-
(2014)
Algorithms Mol Biol
, vol.9
, pp. 14
-
-
Filippova, D.1
Patro, R.2
Duggal, G.3
Kingsford, C.4
-
18
-
-
84973322923
-
Identification of hierarchical chromatin domains
-
Weinreb C., Raphael B.J. Identification of hierarchical chromatin domains. Bioinforma Oxf Engl 2015, 10.1093/bioinformatics/btv485.
-
(2015)
Bioinforma Oxf Engl
-
-
Weinreb, C.1
Raphael, B.J.2
-
19
-
-
84947507957
-
GOTHiC, a simple probabilistic model to resolve complex biases and to identify real interactions in Hi-C data
-
Mifsud B., Martincorena I., Darbo E., Sugar R., Schoenfelder S., Fraser P., Luscombe N. GOTHiC, a simple probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. bioRxiv 2015.
-
(2015)
bioRxiv
-
-
Mifsud, B.1
Martincorena, I.2
Darbo, E.3
Sugar, R.4
Schoenfelder, S.5
Fraser, P.6
Luscombe, N.7
-
20
-
-
84901838628
-
Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts
-
Ay F., Bailey T.L., Noble W.S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 2014, 24:999-1011.
-
(2014)
Genome Res
, vol.24
, pp. 999-1011
-
-
Ay, F.1
Bailey, T.L.2
Noble, W.S.3
-
21
-
-
84930092058
-
Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C
-
Mifsud B., Tavares-Cadete F., Young A.N., Sugar R., Schoenfelder S., Ferreira L., Wingett S.W., Andrews S., Grey W., Ewels P.A., et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 2015, 47:598-606.
-
(2015)
Nat Genet
, vol.47
, pp. 598-606
-
-
Mifsud, B.1
Tavares-Cadete, F.2
Young, A.N.3
Sugar, R.4
Schoenfelder, S.5
Ferreira, L.6
Wingett, S.W.7
Andrews, S.8
Grey, W.9
Ewels, P.A.10
-
22
-
-
84940034154
-
Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution
-
Sahlén P., Abdullayev I., Ramsköld D., Matskova L., Rilakovic N., Lötstedt B., Albert T.J., Lundeberg J., Sandberg R. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol 2015, 16.
-
(2015)
Genome Biol
, pp. 16
-
-
Sahlén, P.1
Abdullayev, I.2
Ramsköld, D.3
Matskova, L.4
Rilakovic, N.5
Lötstedt, B.6
Albert, T.J.7
Lundeberg, J.8
Sandberg, R.9
-
23
-
-
84862908850
-
Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
-
Li G., Ruan X., Auerbach R.K., Sandhu K.S., Zheng M., Wang P., Poh H.M., Goh Y., Lim J., Zhang J., et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012, 148:84-98.
-
(2012)
Cell
, vol.148
, pp. 84-98
-
-
Li, G.1
Ruan, X.2
Auerbach, R.K.3
Sandhu, K.S.4
Zheng, M.5
Wang, P.6
Poh, H.M.7
Goh, Y.8
Lim, J.9
Zhang, J.10
-
24
-
-
84924533047
-
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
-
Vietri Rudan M., Barrington C., Henderson S., Ernst C., Odom D.T., Tanay A., Hadjur S. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 2015, 10:1297-1309.
-
(2015)
Cell Rep
, vol.10
, pp. 1297-1309
-
-
Vietri Rudan, M.1
Barrington, C.2
Henderson, S.3
Ernst, C.4
Odom, D.T.5
Tanay, A.6
Hadjur, S.7
-
25
-
-
70349866023
-
Loss of the insulator protein CTCF during nematode evolution
-
Heger P., Marin B., Schierenberg E. Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 2009, 10:84.
-
(2009)
BMC Mol Biol
, vol.10
, pp. 84
-
-
Heger, P.1
Marin, B.2
Schierenberg, E.3
-
26
-
-
77958107370
-
Insulators as mediators of intra- and inter-chromosomal interactions: a common evolutionary theme
-
Ong C-T., Corces V.G. Insulators as mediators of intra- and inter-chromosomal interactions: a common evolutionary theme. J Biol 2009, 8:73.
-
(2009)
J Biol
, vol.8
, pp. 73
-
-
Ong, C.-T.1
Corces, V.G.2
-
27
-
-
84920656317
-
Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin
-
Maksimenko O., Bartkuhn M., Stakhov V., Herold M., Zolotarev N., Jox T., Buxa M.K., Kirsch R., Bonchuk A., Fedotova A., et al. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Res 2015, 25:89-99.
-
(2015)
Genome Res
, vol.25
, pp. 89-99
-
-
Maksimenko, O.1
Bartkuhn, M.2
Stakhov, V.3
Herold, M.4
Zolotarev, N.5
Jox, T.6
Buxa, M.K.7
Kirsch, R.8
Bonchuk, A.9
Fedotova, A.10
-
28
-
-
84940048820
-
Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions
-
Pugacheva E.M., Rivero-Hinojosa S., Espinoza C.A., Méndez-Catalá C.F., Kang S., Suzuki T., Kosaka-Suzuki N., Robinson S., Nagarajan V., Ye Z., et al. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biol 2015, 16.
-
(2015)
Genome Biol
, pp. 16
-
-
Pugacheva, E.M.1
Rivero-Hinojosa, S.2
Espinoza, C.A.3
Méndez-Catalá, C.F.4
Kang, S.5
Suzuki, T.6
Kosaka-Suzuki, N.7
Robinson, S.8
Nagarajan, V.9
Ye, Z.10
-
29
-
-
85006305723
-
Insulator function and topological domain border strength scale with architectural protein occupancy
-
Van Bortle K., Nichols M.H., Li L., Ong C.-T., Takenaka N., Qin Z.S., Corces V.G. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 2014, 15:R82.
-
(2014)
Genome Biol
, vol.15
, pp. R82
-
-
Van Bortle, K.1
Nichols, M.H.2
Li, L.3
Ong, C.-T.4
Takenaka, N.5
Qin, Z.S.6
Corces, V.G.7
-
30
-
-
84899415536
-
CTCF: an architectural protein bridging genome topology and function
-
Ong C-T., Corces V.G. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014, 15:234-246.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 234-246
-
-
Ong, C.-T.1
Corces, V.G.2
-
31
-
-
84939246295
-
CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
-
Guo Y., Xu Q., Canzio D., Shou J., Li J., Gorkin D.U., Jung I., Wu H., Zhai Y., Tang Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015, 162:900-910.
-
(2015)
Cell
, vol.162
, pp. 900-910
-
-
Guo, Y.1
Xu, Q.2
Canzio, D.3
Shou, J.4
Li, J.5
Gorkin, D.U.6
Jung, I.7
Wu, H.8
Zhai, Y.9
Tang, Y.10
-
32
-
-
84935924135
-
Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders
-
Gómez-Marín C., Tena J.J., Acemel R.D., López-Mayorga M., Naranjo S., de la Calle-Mustienes E., Maeso I., Beccari L., Aneas I., Vielmas E., et al. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proc Natl Acad Sci 2015, 112:7542-7547.
-
(2015)
Proc Natl Acad Sci
, vol.112
, pp. 7542-7547
-
-
Gómez-Marín, C.1
Tena, J.J.2
Acemel, R.D.3
López-Mayorga, M.4
Naranjo, S.5
de la Calle-Mustienes, E.6
Maeso, I.7
Beccari, L.8
Aneas, I.9
Vielmas, E.10
-
33
-
-
84948403758
-
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
-
Sanborn A.L., Rao S.S.P., Huang S.-C., Durand N.C., Huntley M.H., Jewett A.I., Bochkov I.D., Chinnappan D., Cutkosky A., Li J., et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 2015, doi:10.1073/pnas.1518552112.
-
(2015)
Proc Natl Acad Sci U S A
-
-
Sanborn, A.L.1
Rao, S.S.P.2
Huang, S.-C.3
Durand, N.C.4
Huntley, M.H.5
Jewett, A.I.6
Bochkov, I.D.7
Chinnappan, D.8
Cutkosky, A.9
Li, J.10
-
34
-
-
84947765898
-
CTCF binding polarity determines chromatin looping
-
de Wit E., Vos E.S.M., Holwerda S.J.B., Valdes-Quezada C., Verstegen M.J.A.M., Teunissen H., Splinter E., Wijchers P.J., Krijger P.H.L., de Laat W. CTCF binding polarity determines chromatin looping. Mol Cell 2015, 60:676-684.
-
(2015)
Mol Cell
, vol.60
, pp. 676-684
-
-
de Wit, E.1
Vos, E.S.M.2
Holwerda, S.J.B.3
Valdes-Quezada, C.4
Verstegen, M.J.A.M.5
Teunissen, H.6
Splinter, E.7
Wijchers, P.J.8
Krijger, P.H.L.9
de Laat, W.10
-
35
-
-
84946200292
-
Chromosomal loop domains direct the recombination of antigen receptor genes
-
Hu J., Zhang Y., Zhao L., Frock R.L., Du Z., Meyers R.M., Meng F., Schatz D.G., Alt F.W. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 2015, 10.1016/j.cell.2015.10.016.
-
(2015)
Cell
-
-
Hu, J.1
Zhang, Y.2
Zhao, L.3
Frock, R.L.4
Du, Z.5
Meyers, R.M.6
Meng, F.7
Schatz, D.G.8
Alt, F.W.9
-
36
-
-
84939240549
-
A CTCF code for 3D genome architecture
-
Nichols M.H., Corces V.G. A CTCF code for 3D genome architecture. Cell 2015, 162:703-705.
-
(2015)
Cell
, vol.162
, pp. 703-705
-
-
Nichols, M.H.1
Corces, V.G.2
-
37
-
-
84960392389
-
Formation of chromosomal domains by loop extrusion
-
Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. Formation of chromosomal domains by loop extrusion. bioRxiv 2015.
-
(2015)
bioRxiv
-
-
Fudenberg, G.1
Imakaev, M.2
Lu, C.3
Goloborodko, A.4
Abdennur, N.5
Mirny, L.A.6
-
38
-
-
84940391986
-
Genetic control of chromatin states in humans involves local and distal chromosomal interactions
-
Grubert F., Zaugg J.B., Kasowski M., Ursu O., Spacek D.V., Martin A.R., Greenside P., Srivas R., Phanstiel D.H., Pekowska A., et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 2015, 162:1051-1065.
-
(2015)
Cell
, vol.162
, pp. 1051-1065
-
-
Grubert, F.1
Zaugg, J.B.2
Kasowski, M.3
Ursu, O.4
Spacek, D.V.5
Martin, A.R.6
Greenside, P.7
Srivas, R.8
Phanstiel, D.H.9
Pekowska, A.10
-
39
-
-
84940419146
-
Population variation and genetic control of modular chromatin architecture in humans
-
Waszak S.M., Delaneau O., Gschwind A.R., Kilpinen H., Raghav S.K., Witwicki R.M., Orioli A., Wiederkehr M., Panousis N.I., Yurovsky A., et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 2015, 162:1039-1050.
-
(2015)
Cell
, vol.162
, pp. 1039-1050
-
-
Waszak, S.M.1
Delaneau, O.2
Gschwind, A.R.3
Kilpinen, H.4
Raghav, S.K.5
Witwicki, R.M.6
Orioli, A.7
Wiederkehr, M.8
Panousis, N.I.9
Yurovsky, A.10
-
40
-
-
84923366733
-
Chromatin architecture reorganization during stem cell differentiation
-
Dixon J.R., Jung I., Selvaraj S., Shen Y., Antosiewicz-Bourget J.E., Lee A.Y., Ye Z., Kim A., Rajagopal N., Xie W., et al. Chromatin architecture reorganization during stem cell differentiation. Nature 2015, 518:331-336.
-
(2015)
Nature
, vol.518
, pp. 331-336
-
-
Dixon, J.R.1
Jung, I.2
Selvaraj, S.3
Shen, Y.4
Antosiewicz-Bourget, J.E.5
Lee, A.Y.6
Ye, Z.7
Kim, A.8
Rajagopal, N.9
Xie, W.10
-
41
-
-
84913537605
-
Genome-wide map of regulatory interactions in the human genome
-
Heidari N., Phanstiel D.H., He C., Grubert F., Jahanbani F., Kasowski M., Zhang M.Q., Snyder M.P. Genome-wide map of regulatory interactions in the human genome. Genome Res 2014, 24:1905-1917.
-
(2014)
Genome Res
, vol.24
, pp. 1905-1917
-
-
Heidari, N.1
Phanstiel, D.H.2
He, C.3
Grubert, F.4
Jahanbani, F.5
Kasowski, M.6
Zhang, M.Q.7
Snyder, M.P.8
-
42
-
-
84891898005
-
Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus
-
Zhang H., Zeitz M.J., Wang H., Niu B., Ge S., Li W., Cui J., Wang G., Qian G., Higgins M.J., et al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol 2014, 204:61-75.
-
(2014)
J Cell Biol
, vol.204
, pp. 61-75
-
-
Zhang, H.1
Zeitz, M.J.2
Wang, H.3
Niu, B.4
Ge, S.5
Li, W.6
Cui, J.7
Wang, G.8
Qian, G.9
Higgins, M.J.10
-
43
-
-
84923638273
-
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization
-
Quinodoz S., Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014, 24:651-663.
-
(2014)
Trends Cell Biol
, vol.24
, pp. 651-663
-
-
Quinodoz, S.1
Guttman, M.2
-
44
-
-
84943159903
-
Boundary associated long noncoding RNA mediates long-range chromosomal interactions
-
Nwigwe I.J., Kim Y.J., Wacker D.A., Kim T.H. Boundary associated long noncoding RNA mediates long-range chromosomal interactions. PloS One 2015, 10:e0136104.
-
(2015)
PloS One
, vol.10
, pp. e0136104
-
-
Nwigwe, I.J.1
Kim, Y.J.2
Wacker, D.A.3
Kim, T.H.4
-
45
-
-
84905591635
-
Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop
-
Ariel F., Jegu T., Latrasse D., Romero-Barrios N., Christ A., Benhamed M., Crespi M. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 2014, 55:383-396.
-
(2014)
Mol Cell
, vol.55
, pp. 383-396
-
-
Ariel, F.1
Jegu, T.2
Latrasse, D.3
Romero-Barrios, N.4
Christ, A.5
Benhamed, M.6
Crespi, M.7
-
46
-
-
84942109246
-
Control of chromatin structure by long noncoding RNA
-
Böhmdorfer G., Wierzbicki A.T. Control of chromatin structure by long noncoding RNA. Trends Cell Biol 2015, 25:623-632.
-
(2015)
Trends Cell Biol
, vol.25
, pp. 623-632
-
-
Böhmdorfer, G.1
Wierzbicki, A.T.2
-
47
-
-
84861095603
-
Topological domains in mammalian genomes identified by analysis of chromatin interactions
-
Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
-
(2012)
Nature
, vol.485
, pp. 376-380
-
-
Dixon, J.R.1
Selvaraj, S.2
Yue, F.3
Kim, A.4
Li, Y.5
Shen, Y.6
Hu, M.7
Liu, J.S.8
Ren, B.9
|