메뉴 건너뛰기




Volumn 40, Issue 2, 2016, Pages 127-145

Thermophilic biohydrogen production for commercial application: The whole picture

Author keywords

Biohydrogen; Economical analysis; Enzymology; Lifecycle assessment; Metabolic engineering; Thermophilic

Indexed keywords

AGRICULTURAL WASTES; EFFLUENTS; ENVIRONMENTAL IMPACT; ENZYMES; LIFE CYCLE; METABOLIC ENGINEERING; METABOLISM; MICROBIOLOGY; MICROORGANISMS; SUBSTRATES;

EID: 84956596765     PISSN: 0363907X     EISSN: 1099114X     Source Type: Journal    
DOI: 10.1002/er.3438     Document Type: Review
Times cited : (28)

References (132)
  • 1
    • 0036489148 scopus 로고    scopus 로고
    • Hydrogen futures: toward a sustainable energy system
    • Dunn S. Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy 2002; 27(3):235-264.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.3 , pp. 235-264
    • Dunn, S.1
  • 2
    • 15944396152 scopus 로고    scopus 로고
    • The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet
    • Momirlan M, Veziroglu TN. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy 2005; 30(7):795-802.
    • (2005) International Journal of Hydrogen Energy , vol.30 , Issue.7 , pp. 795-802
    • Momirlan, M.1    Veziroglu, T.N.2
  • 3
    • 68549134940 scopus 로고    scopus 로고
    • Hydrogen the fuel for 21st century
    • Jain I. Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy 2009; 34(17):7368-7378.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.17 , pp. 7368-7378
    • Jain, I.1
  • 4
    • 55249096892 scopus 로고    scopus 로고
    • Hydrogen and fuel cells: towards a sustainable energy future
    • Edwards PP et al. Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 2008; 36(12):4356-4362.
    • (2008) Energy Policy , vol.36 , Issue.12 , pp. 4356-4362
    • Edwards, P.P.1
  • 5
    • 84876427176 scopus 로고    scopus 로고
    • Fermentative hydrogen production-process design and bioreactors
    • Waligórska M. Fermentative hydrogen production-process design and bioreactors. Chemical and Process Engineering 2012; 33(4):585-594.
    • (2012) Chemical and Process Engineering , vol.33 , Issue.4 , pp. 585-594
    • Waligórska, M.1
  • 6
    • 79957625438 scopus 로고    scopus 로고
    • An evaluative report and challenges for fermentative biohydrogen production
    • Sinha P, Pandey A. An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy 2011; 36(13):7460-7478.
    • (2011) International Journal of Hydrogen Energy , vol.36 , Issue.13 , pp. 7460-7478
    • Sinha, P.1    Pandey, A.2
  • 7
    • 84948719762 scopus 로고    scopus 로고
    • Biohydrogen production as a potential energy fuel in South Africa
    • Sekoai P, Daramola M. Biohydrogen production as a potential energy fuel in South Africa. Biofuel Research Journal 2015; 2(2):223-226.
    • (2015) Biofuel Research Journal , vol.2 , Issue.2 , pp. 223-226
    • Sekoai, P.1    Daramola, M.2
  • 8
    • 0036827178 scopus 로고    scopus 로고
    • Use of blue optical filters for suppression of growth of algae in hydrogen producing non-axenic cultures of Rhodobacter sphaeroides RV
    • Ko I-B, Noike T. Use of blue optical filters for suppression of growth of algae in hydrogen producing non-axenic cultures of Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy 2002; 27(11):1297-1302.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.11 , pp. 1297-1302
    • Ko, I.-B.1    Noike, T.2
  • 9
    • 0036827179 scopus 로고    scopus 로고
    • Hydrogen production by combining two types of photosynthetic bacteria with different characteristics
    • Kondo T et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. International Journal of Hydrogen Energy 2002; 27(11):1303-1308.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.11 , pp. 1303-1308
    • Kondo, T.1
  • 10
    • 84902548681 scopus 로고    scopus 로고
    • Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria
    • Cao G-L et al. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology for Biofuels 2014; 7:82.
    • (2014) Biotechnology for Biofuels , vol.7 , pp. 82
    • Cao, G.-L.1
  • 11
    • 32244440365 scopus 로고    scopus 로고
    • Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21
    • Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochemistry 2006; 41(3):682-688.
    • (2006) Process Biochemistry , vol.41 , Issue.3 , pp. 682-688
    • Chittibabu, G.1    Nath, K.2    Das, D.3
  • 12
    • 79951832833 scopus 로고    scopus 로고
    • Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media
    • Mathews J, Li Q, Wang G. Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media. Biotechnology and Bioprocess Engineering 2010; 15(4):686-695.
    • (2010) Biotechnology and Bioprocess Engineering , vol.15 , Issue.4 , pp. 686-695
    • Mathews, J.1    Li, Q.2    Wang, G.3
  • 13
    • 77954833586 scopus 로고    scopus 로고
    • Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1
    • Long C et al. Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. International Journal of Hydrogen Energy 2010; 35(13):6657-6664.
    • (2010) International Journal of Hydrogen Energy , vol.35 , Issue.13 , pp. 6657-6664
    • Long, C.1
  • 14
    • 0036827174 scopus 로고    scopus 로고
    • Green alga hydrogen production: progress, challenges and prospects
    • Melis A. Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy 2002; 27(11):1217-1228.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.11 , pp. 1217-1228
    • Melis, A.1
  • 15
    • 0037199137 scopus 로고    scopus 로고
    • Sustained hydrogen photoproduction by Chlamydomonas reinhardtii - effects of culture parameters
    • Kosourov S et al. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii - effects of culture parameters. Biotechnology and Bioengineering 2002; 78(7):731-740.
    • (2002) Biotechnology and Bioengineering , vol.78 , Issue.7 , pp. 731-740
    • Kosourov, S.1
  • 17
    • 0031056356 scopus 로고    scopus 로고
    • Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress
    • Sveshnikov D et al. Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiology Letters 1997; 147(2):297-301.
    • (1997) FEMS Microbiology Letters , vol.147 , Issue.2 , pp. 297-301
    • Sveshnikov, D.1
  • 19
    • 78650828362 scopus 로고    scopus 로고
    • High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
    • Cheng S, Logan BE. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology 2011; 102(3):3571-3574.
    • (2011) Bioresource Technology , vol.102 , Issue.3 , pp. 3571-3574
    • Cheng, S.1    Logan, B.E.2
  • 20
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences 2007; 104(47):18871-18873.
    • (2007) Proceedings of the National Academy of Sciences , vol.104 , Issue.47 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 22
    • 77958153067 scopus 로고    scopus 로고
    • Fermentative biohydrogen production: evaluation of net energy gain
    • Perera KRJ et al.. Fermentative biohydrogen production: evaluation of net energy gain. International Journal of Hydrogen Energy 2010; 35(22):12224-12233.
    • (2010) International Journal of Hydrogen Energy , vol.35 , Issue.22 , pp. 12224-12233
    • Perera, K.R.J.1
  • 23
    • 84877638840 scopus 로고    scopus 로고
    • Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage
    • Hay JXW, Wu TY, Juan JC. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining 2013; 7(3):334-352.
    • (2013) Biofuels, Bioproducts and Biorefining , vol.7 , Issue.3 , pp. 334-352
    • Hay, J.X.W.1    Wu, T.Y.2    Juan, J.C.3
  • 24
    • 77953714257 scopus 로고    scopus 로고
    • Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal
    • Verhaart MR et al.. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environmental Technology 2010; 31(8-9):993-1003.
    • (2010) Environmental Technology , vol.31 , Issue.8-9 , pp. 993-1003
    • Verhaart, M.R.1
  • 25
    • 83055180175 scopus 로고    scopus 로고
    • Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature
    • Chuang Y-S et al.. Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. International Journal of Hydrogen Energy 2011; 36(21):14195-14203.
    • (2011) International Journal of Hydrogen Energy , vol.36 , Issue.21 , pp. 14195-14203
    • Chuang, Y.-S.1
  • 26
    • 68349152509 scopus 로고    scopus 로고
    • Advances in biohydrogen production processes: an approach towards commercialization
    • Das D. Advances in biohydrogen production processes: an approach towards commercialization. International Journal of Hydrogen Energy 2009; 34(17):7349-7357.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.17 , pp. 7349-7357
    • Das, D.1
  • 27
    • 84865337641 scopus 로고    scopus 로고
    • A comprehensive and quantitative review of dark fermentative biohydrogen production
    • Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microbial Cell Factories 2012; 11(1):115.
    • (2012) Microbial Cell Factories , vol.11 , Issue.1 , pp. 115
    • Rittmann, S.1    Herwig, C.2
  • 29
    • 83755187898 scopus 로고    scopus 로고
    • Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus
    • Willquist K, Pawar SS, Van Niel EW. Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus. Microbial Cell Factories 2011; 10(1):111.
    • (2011) Microbial Cell Factories , vol.10 , Issue.1 , pp. 111
    • Willquist, K.1    Pawar, S.S.2    Van Niel, E.W.3
  • 33
    • 79952898115 scopus 로고    scopus 로고
    • Characterization and cloning of oxygen-tolerant hydrogenase from Klebsiella oxytoca HP1
    • Wu X et al.. Characterization and cloning of oxygen-tolerant hydrogenase from Klebsiella oxytoca HP1. Research in Microbiology 2011; 162(3):330-336.
    • (2011) Research in Microbiology , vol.162 , Issue.3 , pp. 330-336
    • Wu, X.1
  • 35
    • 0033773873 scopus 로고    scopus 로고
    • Enzymes of hydrogen metabolism in Pyrococcus furiosus
    • Silva PJ et al. Enzymes of hydrogen metabolism in Pyrococcus furiosus. European Journal of Biochemistry 2000; 267(22):6541-6551.
    • (2000) European Journal of Biochemistry , vol.267 , Issue.22 , pp. 6541-6551
    • Silva, P.J.1
  • 38
    • 0001030519 scopus 로고
    • Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum
    • Adams M, Eccleston E, Howard JB. Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. Proceedings of the National Academy of Sciences 1989; 86(13):4932-4936.
    • (1989) Proceedings of the National Academy of Sciences , vol.86 , Issue.13 , pp. 4932-4936
    • Adams, M.1    Eccleston, E.2    Howard, J.B.3
  • 39
    • 80051687984 scopus 로고    scopus 로고
    • Current status of the metabolic engineering of microorganisms for biohydrogen production
    • Oh Y-K et al.. Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology 2011; 102(18):8357-8367.
    • (2011) Bioresource Technology , vol.102 , Issue.18 , pp. 8357-8367
    • Oh, Y.-K.1
  • 40
    • 67649413347 scopus 로고    scopus 로고
    • The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production
    • Schut GJ, Adams MW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. Journal of Bacteriology 2009; 191(13):4451-4457.
    • (2009) Journal of Bacteriology , vol.191 , Issue.13 , pp. 4451-4457
    • Schut, G.J.1    Adams, M.W.2
  • 41
    • 0037934657 scopus 로고    scopus 로고
    • A simple energy-conserving system: proton reduction coupled to proton translocation
    • Sapra R, Bagramyan K, Adams MW. A simple energy-conserving system: proton reduction coupled to proton translocation. Proceedings of the National Academy of Sciences 2003; 100(13):7545-7550.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.13 , pp. 7545-7550
    • Sapra, R.1    Bagramyan, K.2    Adams, M.W.3
  • 42
    • 13544269458 scopus 로고    scopus 로고
    • Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1
    • Kanai T et al.. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology 2005; 116(3):271-282.
    • (2005) Journal of Biotechnology , vol.116 , Issue.3 , pp. 271-282
    • Kanai, T.1
  • 43
    • 84871136301 scopus 로고    scopus 로고
    • Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria
    • Carere CR et al.. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiology 2012; 12(1):295.
    • (2012) BMC Microbiology , vol.12 , Issue.1 , pp. 295
    • Carere, C.R.1
  • 44
    • 64749085304 scopus 로고    scopus 로고
    • Advances in fermentative biohydrogen production: the way forward?
    • Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology 2009; 27(5):287-297.
    • (2009) Trends in Biotechnology , vol.27 , Issue.5 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 46
    • 0028309669 scopus 로고
    • Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium
    • Rainey F et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiology Letters 1994; 120(3):263-266.
    • (1994) FEMS Microbiology Letters , vol.120 , Issue.3 , pp. 263-266
    • Rainey, F.1
  • 47
    • 12244253037 scopus 로고    scopus 로고
    • Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
    • van Niel EW, Claassen PA, Stams AJ. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnology and Bioengineering 2003; 81(3):255-262.
    • (2003) Biotechnology and Bioengineering , vol.81 , Issue.3 , pp. 255-262
    • van Niel, E.W.1    Claassen, P.A.2    Stams, A.J.3
  • 48
    • 34247594961 scopus 로고    scopus 로고
    • Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus
    • De Vrije T et al. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Applied Microbiology and Biotechnology 2007; 74(6):1358-1367.
    • (2007) Applied Microbiology and Biotechnology , vol.74 , Issue.6 , pp. 1358-1367
    • De Vrije, T.1
  • 50
    • 0142115427 scopus 로고    scopus 로고
    • Oligonucleotide probes for the detection of representatives of the genus Thermoanaerobacter
    • Subbotina I et al. Oligonucleotide probes for the detection of representatives of the genus Thermoanaerobacter. Microbiology 2003; 72(3):331-339.
    • (2003) Microbiology , vol.72 , Issue.3 , pp. 331-339
    • Subbotina, I.1
  • 51
    • 0015183079 scopus 로고
    • Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia
    • Jungermann K et al. Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia. Archives of Microbiology 1971; 80(4):370-372.
    • (1971) Archives of Microbiology , vol.80 , Issue.4 , pp. 370-372
    • Jungermann, K.1
  • 52
    • 4344700076 scopus 로고    scopus 로고
    • A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis
    • Soboh B, Linder D, Hedderich R. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 2004; 150(7):2451-2463.
    • (2004) Microbiology , vol.150 , Issue.7 , pp. 2451-2463
    • Soboh, B.1    Linder, D.2    Hedderich, R.3
  • 53
    • 84889617242 scopus 로고    scopus 로고
    • Biological hydrogen production by anaerobic microorganisms
    • Kengen SW et al. Biological hydrogen production by anaerobic microorganisms. Biofuels 2009:197-221.
    • (2009) Biofuels , pp. 197-221
    • Kengen, S.W.1
  • 54
    • 84880596927 scopus 로고    scopus 로고
    • Improvement of hydrogen production by newly isolatedThermoanaerobacterium thermosaccharolyticumIIT BT-ST1
    • Roy S, Vishnuvardhan M, Das D. Improvement of hydrogen production by newly isolatedThermoanaerobacterium thermosaccharolyticumIIT BT-ST1. International Journal of Hydrogen Energy 2014; 39(14):7541-7552.
    • (2014) International Journal of Hydrogen Energy , vol.39 , Issue.14 , pp. 7541-7552
    • Roy, S.1    Vishnuvardhan, M.2    Das, D.3
  • 55
    • 84872409547 scopus 로고    scopus 로고
    • Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using mixed xylose/arabinose as substrate
    • Saripan AF, Reungsang A. Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using mixed xylose/arabinose as substrate. Electronic Journal of Biotechnology 2013; 16(1):1-1.
    • (2013) Electronic Journal of Biotechnology , vol.16 , Issue.1 , pp. 1-1
    • Saripan, A.F.1    Reungsang, A.2
  • 56
    • 84902548681 scopus 로고    scopus 로고
    • Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria
    • Cao G-L et al. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology for Biofuels 2014; 7(1):82.
    • (2014) Biotechnology for Biofuels , vol.7 , Issue.1 , pp. 82
    • Cao, G.-L.1
  • 57
    • 0028356024 scopus 로고
    • Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway
    • Schröder C, Selig M, Schönheit P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Archives of Microbiology 1994; 161(6):460-470.
    • (1994) Archives of Microbiology , vol.161 , Issue.6 , pp. 460-470
    • Schröder, C.1    Selig, M.2    Schönheit, P.3
  • 58
    • 0142138858 scopus 로고    scopus 로고
    • The unique features of glycolytic pathways in Archaea
    • Verhees C et al. The unique features of glycolytic pathways in Archaea. Biochemistry Journal 2003; 375:231-246.
    • (2003) Biochemistry Journal , vol.375 , pp. 231-246
    • Verhees, C.1
  • 60
    • 32244440365 scopus 로고    scopus 로고
    • Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21
    • Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochemistry 2006; 41(3):682-688.
    • (2006) Process Biochemistry , vol.41 , Issue.3 , pp. 682-688
    • Chittibabu, G.1    Nath, K.2    Das, D.3
  • 61
    • 0027945387 scopus 로고
    • Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur
    • Ma K, Adams M. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. Journal of Bacteriology 1994; 176(21):6509-6517.
    • (1994) Journal of Bacteriology , vol.176 , Issue.21 , pp. 6509-6517
    • Ma, K.1    Adams, M.2
  • 62
    • 84906248799 scopus 로고    scopus 로고
    • Optimization of thermophilic fermentative hydrogen production by the newly isolated Caloranaerobacter azorensis H53214 from deep-sea hydrothermal vent environment
    • Jiang L et al. Optimization of thermophilic fermentative hydrogen production by the newly isolated Caloranaerobacter azorensis H53214 from deep-sea hydrothermal vent environment. International Journal of Hydrogen Energy 2014; 39(26):14154-14160.
    • (2014) International Journal of Hydrogen Energy , vol.39 , Issue.26 , pp. 14154-14160
    • Jiang, L.1
  • 63
    • 84906931165 scopus 로고    scopus 로고
    • Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture
    • Lai Z et al. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnology for Biofuels 2014; 7(1):119.
    • (2014) Biotechnology for Biofuels , vol.7 , Issue.1 , pp. 119
    • Lai, Z.1
  • 64
    • 33746874041 scopus 로고    scopus 로고
    • Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates
    • Levin DB et al. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy 2006; 31(11):1496-1503.
    • (2006) International Journal of Hydrogen Energy , vol.31 , Issue.11 , pp. 1496-1503
    • Levin, D.B.1
  • 65
    • 23744447992 scopus 로고    scopus 로고
    • Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia
    • Desvaux M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiology Reviews 2005; 29(4):741-764.
    • (2005) FEMS Microbiology Reviews , vol.29 , Issue.4 , pp. 741-764
    • Desvaux, M.1
  • 66
    • 44749092706 scopus 로고    scopus 로고
    • Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17
    • Liu Y et al.. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International Journal of Hydrogen Energy 2008; 33(12):2927-2933.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.12 , pp. 2927-2933
    • Liu, Y.1
  • 67
    • 84881549049 scopus 로고    scopus 로고
    • A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse
    • Cheng J, Zhu M. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresource Technology 2013; 144:623-631.
    • (2013) Bioresource Technology , vol.144 , pp. 623-631
    • Cheng, J.1    Zhu, M.2
  • 68
    • 84862674677 scopus 로고    scopus 로고
    • Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste
    • Li Q, Liu C-Z. Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. International Journal of Hydrogen Energy 2012; 37(14):10648-10654.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.14 , pp. 10648-10654
    • Li, Q.1    Liu, C.-Z.2
  • 69
    • 0035109906 scopus 로고    scopus 로고
    • Microbial hydrogen production from sweet potato starch residue
    • Yokoi H et al. Microbial hydrogen production from sweet potato starch residue. Journal of Bioscience and Bioengineering 2001; 91(1):58-63.
    • (2001) Journal of Bioscience and Bioengineering , vol.91 , Issue.1 , pp. 58-63
    • Yokoi, H.1
  • 70
    • 65949093076 scopus 로고    scopus 로고
    • Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars
    • Zeidan AA, Van Niel EW. Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. International Journal of Hydrogen Energy 2009; 34(10):4524-4528.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.10 , pp. 4524-4528
    • Zeidan, A.A.1    Van Niel, E.W.2
  • 71
    • 76749100206 scopus 로고    scopus 로고
    • Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium
    • Geng A et al. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresource Technology 2010; 101(11):4029-4033.
    • (2010) Bioresource Technology , vol.101 , Issue.11 , pp. 4029-4033
    • Geng, A.1
  • 72
    • 0036036491 scopus 로고    scopus 로고
    • Construction of a stable microbial community with high cellulose-degradation ability
    • Haruta S et al. Construction of a stable microbial community with high cellulose-degradation ability. Applied Microbiology and Biotechnology 2002; 59(4-5):529-534.
    • (2002) Applied Microbiology and Biotechnology , vol.59 , Issue.4-5 , pp. 529-534
    • Haruta, S.1
  • 73
    • 34848880157 scopus 로고    scopus 로고
    • Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate
    • Mohan SV, Babu VL, Sarma P. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresource Technology 2008; 99(1):59-67.
    • (2008) Bioresource Technology , vol.99 , Issue.1 , pp. 59-67
    • Mohan, S.V.1    Babu, V.L.2    Sarma, P.3
  • 75
    • 79551686522 scopus 로고    scopus 로고
    • Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures
    • Nissilä ME et al. Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresource Technology 2011; 102(6):4501-4506.
    • (2011) Bioresource Technology , vol.102 , Issue.6 , pp. 4501-4506
    • Nissilä, M.E.1
  • 76
    • 6944228870 scopus 로고    scopus 로고
    • Improvement of fermentative hydrogen production: various approaches
    • Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology 2004; 65(5):520-529.
    • (2004) Applied Microbiology and Biotechnology , vol.65 , Issue.5 , pp. 520-529
    • Nath, K.1    Das, D.2
  • 77
    • 53749091245 scopus 로고    scopus 로고
    • Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis
    • Sompong O, Prasertsan P, Birkeland N-K. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresource Technology 2009; 100(2):909-918.
    • (2009) Bioresource Technology , vol.100 , Issue.2 , pp. 909-918
    • Sompong, O.1    Prasertsan, P.2    Birkeland, N.-K.3
  • 78
    • 0037298610 scopus 로고    scopus 로고
    • Thermophilic H2 production from a cellulose-containing wastewater
    • Liu H, Zhang T, Fang HH. Thermophilic H2 production from a cellulose-containing wastewater. Biotechnology Letters 2003; 25(4):365-369.
    • (2003) Biotechnology Letters , vol.25 , Issue.4 , pp. 365-369
    • Liu, H.1    Zhang, T.2    Fang, H.H.3
  • 79
    • 3142701514 scopus 로고    scopus 로고
    • Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
    • Shin H-S, Youn J-H, Kim S-H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy 2004; 29(13):1355-1363.
    • (2004) International Journal of Hydrogen Energy , vol.29 , Issue.13 , pp. 1355-1363
    • Shin, H.-S.1    Youn, J.-H.2    Kim, S.-H.3
  • 80
    • 0142156069 scopus 로고    scopus 로고
    • Biohydrogen production from starch in wastewater under thermophilic condition
    • Zhang T, Liu H, Fang HH. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 2003; 69(2):149-156.
    • (2003) Journal of Environmental Management , vol.69 , Issue.2 , pp. 149-156
    • Zhang, T.1    Liu, H.2    Fang, H.H.3
  • 81
    • 79955925970 scopus 로고    scopus 로고
    • Global land-use implications of first and second generation biofuel targets
    • Havlík P et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 2011; 39(10):5690-5702.
    • (2011) Energy Policy , vol.39 , Issue.10 , pp. 5690-5702
    • Havlík, P.1
  • 82
    • 13444280500 scopus 로고    scopus 로고
    • Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term
    • Hamelinck CN, Van Hooijdonk G, Faaij AP. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass and Bioenergy 2005; 28(4):384-410.
    • (2005) Biomass and Bioenergy , vol.28 , Issue.4 , pp. 384-410
    • Hamelinck, C.N.1    Van Hooijdonk, G.2    Faaij, A.P.3
  • 83
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
    • Alvira P et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 2010; 101(13):4851-4861.
    • (2010) Bioresource Technology , vol.101 , Issue.13 , pp. 4851-4861
    • Alvira, P.1
  • 84
    • 77951630910 scopus 로고    scopus 로고
    • Thermostable enzymes as biocatalysts in the biofuel industry
    • Yeoman CJ et al. Thermostable enzymes as biocatalysts in the biofuel industry. Advances in Applied Microbiology 2010; 70:1-55.
    • (2010) Advances in Applied Microbiology , vol.70 , pp. 1-55
    • Yeoman, C.J.1
  • 85
    • 84873119880 scopus 로고    scopus 로고
    • Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
    • Bhalla A et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology 2013; 128:751-759.
    • (2013) Bioresource Technology , vol.128 , pp. 751-759
    • Bhalla, A.1
  • 86
    • 82455184439 scopus 로고    scopus 로고
    • Effects of feedstocks on the process integration of biohydrogen production
    • Foglia D et al. Effects of feedstocks on the process integration of biohydrogen production. Clean Technologies and Environmental Policy 2011; 13(4):547-558.
    • (2011) Clean Technologies and Environmental Policy , vol.13 , Issue.4 , pp. 547-558
    • Foglia, D.1
  • 87
    • 84908095418 scopus 로고    scopus 로고
    • Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate
    • Boboescu IZ et al. Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate. Biotechnology for Biofuels 2014; 7(1):139.
    • (2014) Biotechnology for Biofuels , vol.7 , Issue.1 , pp. 139
    • Boboescu, I.Z.1
  • 88
    • 78049406009 scopus 로고    scopus 로고
    • Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP)
    • Ochs D, Wukovits W, Ahrer W. Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). Journal of Cleaner Production 2010; 18:S88-S94.
    • (2010) Journal of Cleaner Production , vol.18 , pp. S88-S94
    • Ochs, D.1    Wukovits, W.2    Ahrer, W.3
  • 90
    • 80052665545 scopus 로고    scopus 로고
    • A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus
    • Ljunggren M et al. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus. Biotechnology for Biofuels 2011; 4(1):31.
    • (2011) Biotechnology for Biofuels , vol.4 , Issue.1 , pp. 31
    • Ljunggren, M.1
  • 91
    • 0036827184 scopus 로고    scopus 로고
    • Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria
    • Noike T et al. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 2002; 27(11):1367-1371.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.11 , pp. 1367-1371
    • Noike, T.1
  • 92
    • 77954313440 scopus 로고    scopus 로고
    • Techno-economic analysis of a two-step biological process producing hydrogen and methane
    • Ljunggren M, Zacchi G. Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresource Technology 2010; 101(20):7780-7788.
    • (2010) Bioresource Technology , vol.101 , Issue.20 , pp. 7780-7788
    • Ljunggren, M.1    Zacchi, G.2
  • 93
    • 68349152825 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions
    • Azbar N et al. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy 2009; 34(17):7441-7447.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.17 , pp. 7441-7447
    • Azbar, N.1
  • 94
    • 72649101817 scopus 로고    scopus 로고
    • Influence of solids retention time on continuous H 2 production using membrane bioreactor
    • Lee D-Y, Li Y-Y, Noike T. Influence of solids retention time on continuous H 2 production using membrane bioreactor. International Journal of Hydrogen Energy 2010; 35(1):52-60.
    • (2010) International Journal of Hydrogen Energy , vol.35 , Issue.1 , pp. 52-60
    • Lee, D.-Y.1    Li, Y.-Y.2    Noike, T.3
  • 95
    • 3042855672 scopus 로고    scopus 로고
    • Biological hydrogen production using a membrane bioreactor
    • Oh S-E et al. Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering 2004; 87(1):119-127.
    • (2004) Biotechnology and Bioengineering , vol.87 , Issue.1 , pp. 119-127
    • Oh, S.-E.1
  • 96
    • 79958085593 scopus 로고    scopus 로고
    • Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions
    • Kim M-S, Lee D-Y, Kim D-H. Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions. International Journal of Hydrogen Energy 2011; 36(14):8712-8718.
    • (2011) International Journal of Hydrogen Energy , vol.36 , Issue.14 , pp. 8712-8718
    • Kim, M.-S.1    Lee, D.-Y.2    Kim, D.-H.3
  • 97
    • 39849103268 scopus 로고    scopus 로고
    • Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge
    • O-Thong S et al. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. International Journal of Hydrogen Energy 2008; 33(4):1221-1231.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.4 , pp. 1221-1231
    • O-Thong, S.1
  • 98
    • 77954311113 scopus 로고    scopus 로고
    • Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration
    • Kongjan P, Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresource Technology 2010; 101(20):7789-7796.
    • (2010) Bioresource Technology , vol.101 , Issue.20 , pp. 7789-7796
    • Kongjan, P.1    Angelidaki, I.2
  • 99
    • 84896099021 scopus 로고    scopus 로고
    • Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage
    • Santos SC et al. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Bioresource Technology 2014; 159:55-63.
    • (2014) Bioresource Technology , vol.159 , pp. 55-63
    • Santos, S.C.1
  • 100
    • 16644362376 scopus 로고    scopus 로고
    • Thermophilic biohydrogen production from glucose with trickling biofilter
    • Oh YK et al. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnology and Bioengineering 2004; 88(6):690-698.
    • (2004) Biotechnology and Bioengineering , vol.88 , Issue.6 , pp. 690-698
    • Oh, Y.K.1
  • 101
    • 0036842688 scopus 로고    scopus 로고
    • Comparative performance of mesophilic and thermophilic acidogenic upflow reactors
    • Yu H-Q, Fang HH, Gu G-W. Comparative performance of mesophilic and thermophilic acidogenic upflow reactors. Process Biochemistry 2002; 38(3):447-454.
    • (2002) Process Biochemistry , vol.38 , Issue.3 , pp. 447-454
    • Yu, H.-Q.1    Fang, H.H.2    Gu, G.-W.3
  • 102
    • 33748539763 scopus 로고    scopus 로고
    • Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging
    • Kraemer JT, Bagley DM. Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging. Biotechnology Letters 2006; 28(18):1485-1491.
    • (2006) Biotechnology Letters , vol.28 , Issue.18 , pp. 1485-1491
    • Kraemer, J.T.1    Bagley, D.M.2
  • 103
    • 33748551648 scopus 로고    scopus 로고
    • Effect of gas sparging on continuous fermentative hydrogen production
    • Kim D-H et al. Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy 2006; 31(15):2158-2169.
    • (2006) International Journal of Hydrogen Energy , vol.31 , Issue.15 , pp. 2158-2169
    • Kim, D.-H.1
  • 104
    • 84863610045 scopus 로고    scopus 로고
    • The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation
    • Clark IC, Zhang RH, Upadhyaya SK. The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. International Journal of Hydrogen Energy 2012; 37(15):11504-11513.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.15 , pp. 11504-11513
    • Clark, I.C.1    Zhang, R.H.2    Upadhyaya, S.K.3
  • 105
    • 0000304953 scopus 로고
    • Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum
    • Lamed R, Lobos J, Su T. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Applied and Environmental Microbiology 1988; 54(5):1216-1221.
    • (1988) Applied and Environmental Microbiology , vol.54 , Issue.5 , pp. 1216-1221
    • Lamed, R.1    Lobos, J.2    Su, T.3
  • 106
    • 84862237383 scopus 로고    scopus 로고
    • Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure
    • Sonnleitner A et al. Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure. Bioresource Technology 2012; 118:170-176.
    • (2012) Bioresource Technology , vol.118 , pp. 170-176
    • Sonnleitner, A.1
  • 107
    • 55049123027 scopus 로고    scopus 로고
    • Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings
    • Fritsch M, Hartmeier W, Chang J-S. Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings. International Journal of Hydrogen Energy 2008; 33(22):6549-6557.
    • (2008) International Journal of Hydrogen Energy , vol.33 , Issue.22 , pp. 6549-6557
    • Fritsch, M.1    Hartmeier, W.2    Chang, J.-S.3
  • 108
    • 68349152825 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions
    • Azbar N et al. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy 2009; 34(17):7441-7447.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.17 , pp. 7441-7447
    • Azbar, N.1
  • 109
    • 84902269501 scopus 로고    scopus 로고
    • Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions
    • Santos SC et al. Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. International Journal of Hydrogen Energy 2014; 39(18):9599-9610.
    • (2014) International Journal of Hydrogen Energy , vol.39 , Issue.18 , pp. 9599-9610
    • Santos, S.C.1
  • 110
    • 84856805324 scopus 로고    scopus 로고
    • Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures
    • Abreu AA et al. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnology for Biofuels 2012; 5(6).
    • (2012) Biotechnology for Biofuels , vol.5 , Issue.6
    • Abreu, A.A.1
  • 112
    • 84956586156 scopus 로고    scopus 로고
    • Feasibility of biological hydrogen production from biomass for utilization in fuel cells
    • Claassen P et al. Feasibility of biological hydrogen production from biomass for utilization in fuel cells. Gas 2000; 32:0-8.
    • (2000) Gas , vol.32 , pp. 0-8
    • Claassen, P.1
  • 113
    • 77950874187 scopus 로고    scopus 로고
    • Techno-economic evaluation of a two-step biological process for hydrogen production
    • Ljunggren M, Zacchi G. Techno-economic evaluation of a two-step biological process for hydrogen production. Biotechnology Progress 2010; 26(2):496-504.
    • (2010) Biotechnology Progress , vol.26 , Issue.2 , pp. 496-504
    • Ljunggren, M.1    Zacchi, G.2
  • 114
    • 84956593688 scopus 로고    scopus 로고
    • Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances
    • Foglia D, et al. Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances 2011.
    • (2011)
    • Foglia, D.1
  • 115
    • 84956577600 scopus 로고    scopus 로고
    • Optimization of a two-stage bio-hydrogen fermentation process
    • Wukovits W, et al. Optimization of a two-stage bio-hydrogen fermentation process, 2010.
    • (2010)
    • Wukovits, W.1
  • 116
    • 0036827191 scopus 로고    scopus 로고
    • Biological hydrogen production; fundamentals and limiting processes
    • Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 2002; 27(11):1185-1193.
    • (2002) International Journal of Hydrogen Energy , vol.27 , Issue.11 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 118
    • 84865154915 scopus 로고    scopus 로고
    • Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725
    • Chung D et al. Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 2012; 7(8):43844.
    • (2012) PLoS One , vol.7 , Issue.8 , pp. 43844
    • Chung, D.1
  • 119
    • 84885943611 scopus 로고    scopus 로고
    • Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress
    • Gaida SM et al. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Research 2013; 41(18):8726-8737.
    • (2013) Nucleic Acids Research , vol.41 , Issue.18 , pp. 8726-8737
    • Gaida, S.M.1
  • 120
    • 84895470079 scopus 로고    scopus 로고
    • Engineering biofuel tolerance in non-native producing microorganisms
    • Jin H et al. Engineering biofuel tolerance in non-native producing microorganisms. Biotechnology Advances 2014; 32(2):541-548.
    • (2014) Biotechnology Advances , vol.32 , Issue.2 , pp. 541-548
    • Jin, H.1
  • 121
    • 84887215934 scopus 로고    scopus 로고
    • Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels
    • Wang J et al. Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. Journal of Proteome Research 2013; 12(11):5302-5312.
    • (2013) Journal of Proteome Research , vol.12 , Issue.11 , pp. 5302-5312
    • Wang, J.1
  • 122
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology 2010; 85(6):1665-1671.
    • (2010) Applied Microbiology and Biotechnology , vol.85 , Issue.6 , pp. 1665-1671
    • Logan, B.E.1
  • 123
    • 79958732237 scopus 로고    scopus 로고
    • Microbial paths to renewable hydrogen production
    • Hallenbeck PC. Microbial paths to renewable hydrogen production. Biofuels 2011; 2(3):285-302.
    • (2011) Biofuels , vol.2 , Issue.3 , pp. 285-302
    • Hallenbeck, P.C.1
  • 124
    • 79151470397 scopus 로고    scopus 로고
    • Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
    • Wang A et al.. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology 2011; 102(5):4137-4143.
    • (2011) Bioresource Technology , vol.102 , Issue.5 , pp. 4137-4143
    • Wang, A.1
  • 125
    • 77951023331 scopus 로고    scopus 로고
    • Cogeneration of H 2 and CH 4 from water hyacinth by two-step anaerobic fermentation
    • Cheng J et al. Cogeneration of H 2 and CH 4 from water hyacinth by two-step anaerobic fermentation. International Journal of Hydrogen Energy 2010; 35(7):3029-3035.
    • (2010) International Journal of Hydrogen Energy , vol.35 , Issue.7 , pp. 3029-3035
    • Cheng, J.1
  • 126
    • 34447103137 scopus 로고    scopus 로고
    • Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition
    • Mohan SV et al. Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. International Journal of Hydrogen Energy 2007; 32(13):2286-2295.
    • (2007) International Journal of Hydrogen Energy , vol.32 , Issue.13 , pp. 2286-2295
    • Mohan, S.V.1
  • 127
    • 84866430428 scopus 로고    scopus 로고
    • Biohydrogen production from cheese whey wastewater in a two-step anaerobic process
    • Rai PK, Singh S, Asthana R. Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Applied Biochemistry and Biotechnology 2012; 167(6):1540-1549.
    • (2012) Applied Biochemistry and Biotechnology , vol.167 , Issue.6 , pp. 1540-1549
    • Rai, P.K.1    Singh, S.2    Asthana, R.3
  • 128
    • 67650713527 scopus 로고    scopus 로고
    • Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
    • Lalaurette E et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. International Journal of Hydrogen Energy 2009; 34(15):6201-6210.
    • (2009) International Journal of Hydrogen Energy , vol.34 , Issue.15 , pp. 6201-6210
    • Lalaurette, E.1
  • 129
    • 84896342583 scopus 로고    scopus 로고
    • Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production
    • Amulya K, Reddy MV, Mohan SV. Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresource Technology 2014; 158:336-342.
    • (2014) Bioresource Technology , vol.158 , pp. 336-342
    • Amulya, K.1    Reddy, M.V.2    Mohan, S.V.3
  • 130
    • 84865751689 scopus 로고    scopus 로고
    • Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment
    • Mohan SV, Devi MP. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresource Technology 2012; 123:627-635.
    • (2012) Bioresource Technology , vol.123 , pp. 627-635
    • Mohan, S.V.1    Devi, M.P.2
  • 132
    • 84862640834 scopus 로고    scopus 로고
    • Effect of enzyme addition on fermentative hydrogen production from wheat straw
    • Quéméneur M et al. Effect of enzyme addition on fermentative hydrogen production from wheat straw. International Journal of Hydrogen Energy 2012; 37(14):10639-10647.
    • (2012) International Journal of Hydrogen Energy , vol.37 , Issue.14 , pp. 10639-10647
    • Quéméneur, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.