메뉴 건너뛰기




Volumn 44, Issue 4, 2011, Pages 854-865

A unifying criterion for unsupervised clustering and feature selection

Author keywords

Global optimization; Unsupervised clustering; Unsupervised feature selection

Indexed keywords

EXPLORATORY DATA ANALYSIS; FEATURE SELECTION; LEARNING PROCESS; NUMBER OF CLUSTERS; OBJECTIVE FUNCTIONS; OPTIMAL PARTITIONS; OPTIMIZATION HEURISTICS; OPTIMIZATION PROBLEMS; SYNTHETIC DATA; UNSUPERVISED CLUSTERING; UNSUPERVISED FEATURE SELECTION;

EID: 78650291481     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.10.006     Document Type: Article
Times cited : (64)

References (29)
  • 1
    • 84949479246 scopus 로고    scopus 로고
    • On the Surprising Behavior of Distance Metrics in High Dimensional Spaces
    • C.C. Aggarwal, A. Hinneburg, and D.A. Keim On the surprising behavior of distance metrics in high dimensional space Lecture Notes in Computer Science 2001 Springer 420 434 (Pubitemid 33213340)
    • (2001) Lecture Notes in Computer Science , Issue.1973 , pp. 420-434
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.A.3
  • 10
    • 40649125308 scopus 로고    scopus 로고
    • Semi-supervised feature selection via multiobjective optimization
    • 1716552, International Joint Conference on Neural Networks 2006, IJCNN '06
    • J. Handl, and J. Knowles Feature subset selection in unsupervised learning via multiobjective optimization International Journal of Computational Intelligence Research 2 3 2006 217 238 (Pubitemid 351369767)
    • (2006) IEEE International Conference on Neural Networks - Conference Proceedings , pp. 3319-3326
    • Handl, J.1    Knowles, J.2
  • 11
    • 44649105615 scopus 로고    scopus 로고
    • Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
    • Y. Hong, S. Kwong, Y. Chang, and Q. Ren Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm Pattern Recognition 41 2008 2742 2756
    • (2008) Pattern Recognition , vol.41 , pp. 2742-2756
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 13
    • 25844500444 scopus 로고    scopus 로고
    • New indices for cluster validity assessment
    • DOI 10.1016/j.patrec.2005.04.007, PII S016786550500125X
    • M. Kim, and R.S. Ramakrishna Some new indexes of cluster validity Pattern Recognition Letters 26 15 2005 2353 2363 (Pubitemid 41394292)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.15 , pp. 2353-2363
    • Kim, M.1    Ramakrishna, R.S.2
  • 14
    • 24344503628 scopus 로고    scopus 로고
    • Evolutionary model selection in unsupervised learning
    • Y. Kim, W.N. Street, and F. Menczer Evolutionary model selection in unsupervised learning Intelligent Data Analysis 6 6 2002 531 556
    • (2002) Intelligent Data Analysis , vol.6 , Issue.6 , pp. 531-556
    • Kim, Y.1    Street, W.N.2    Menczer, F.3
  • 19
    • 78650265834 scopus 로고
    • An evolutionary approach to unsupervised automated classification
    • ELITE (European Laboratory for Intelligent Techniques) and Verlag Mainz
    • S., Luchian, An evolutionary approach to unsupervised automated classification, in: Proceedings of EUFIT'95European Forum of Intelligent Techniques, ELITE (European Laboratory for Intelligent Techniques) and Verlag Mainz, 1995.
    • (1995) Proceedings of EUFIT'95-European Forum of Intelligent Techniques
    • Luchian, S.1
  • 20
    • 78650272189 scopus 로고    scopus 로고
    • Three evolutionary approaches to classification problems
    • John Wiley& Sons Chichester, New York, Toronto
    • S. Luchian, and H. Luchian Three evolutionary approaches to classification problems Evolutionary Algorithms in Computer Science 1999 John Wiley& Sons Chichester, New York, Toronto 351 380
    • (1999) Evolutionary Algorithms in Computer Science , pp. 351-380
    • Luchian, S.1    Luchian, H.2
  • 22
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan, and M.C. Cooper An examination of procedures for determining the number of clusters in a data set Psychometrika 50 1985 159 179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.C.2
  • 25
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis Journal of Computational and Applied Mathematics 20 1 1987 53 65
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.J.1
  • 27
    • 33747883187 scopus 로고    scopus 로고
    • Novel unsupervised feature filtering of biological data
    • DOI 10.1093/bioinformatics/btl214
    • R. Varshavsky, A. Gottlieb, M. Linial, and D. Horn Novel unsupervised feature filtering of biological data Bioinformatics 22 14 2006 507 513 (Pubitemid 44288322)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Varshavsky, R.1    Gottlieb, A.2    Linial, M.3    Horn, D.4
  • 28
    • 0003209239 scopus 로고
    • Multi-niche crowding for multimodal search
    • New Frontiers, Ed. Lance Chambers
    • V. Vemuri, W. Cedeo, Multi-niche crowding for multimodal search, in: Practical Handbook of Genetic Algorithms: New Frontiers, Ed. Lance Chambers, vol. 2, 1995.
    • (1995) Practical Handbook of Genetic Algorithms , vol.2
    • Vemuri, V.1    Cedeo, W.2
  • 29
    • 53449092759 scopus 로고    scopus 로고
    • A new feature selection method for Gaussian mixture clustering
    • H. Zeng, and Y.-M. Cheung A new feature selection method for Gaussian mixture clustering Pattern Recognition 42 2009 243 250
    • (2009) Pattern Recognition , vol.42 , pp. 243-250
    • Zeng, H.1    Cheung, Y.-M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.