-
1
-
-
77950516820
-
A hybrid neural network and ARIMA model for water quality time series prediction
-
Ömer Faruk, D.: A hybrid neural network and ARIMA model for water quality time series prediction. J. Engineering Applications of Artificial Intelligence 23(4), 586–594 (2010)
-
(2010)
J. Engineering Applications of Artificial Intelligence
, vol.23
, Issue.4
, pp. 586-594
-
-
Ömer Faruk, D.1
-
2
-
-
65249087289
-
Prediction of Johor River water quality parameters using artificial neural networks
-
Najah, A., Elshafie, A., Karim, O.A., et al.: Prediction of Johor River water quality parameters using artificial neural networks. European Journal of Scientific Research 28(3), 422–435 (2009)
-
(2009)
European Journal of Scientific Research
, vol.28
, Issue.3
, pp. 422-435
-
-
Najah, A.1
Elshafie, A.2
Karim, O.A.3
-
4
-
-
84885848631
-
The reference condition: Predicting benchmarks for ecological and water-quality assessments
-
Hawkins, C.P., Olson, J.R., Hill, R.A.: The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society 29(1), 312–343 (2010)
-
(2010)
Journal of the North American Benthological Society
, vol.29
, Issue.1
, pp. 312-343
-
-
Hawkins, C.P.1
Olson, J.R.2
Hill, R.A.3
-
5
-
-
84887454931
-
A Divide-and-Conquer Method Based Ensemble Regression Model for Water Quality Prediction
-
Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.), Springer, Heidelberg
-
Zou, X., Wang, G., Gou, G., Li, H.: A Divide-and-Conquer Method Based Ensemble Regression Model for Water Quality Prediction. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 397–404. Springer, Heidelberg (2013)
-
(2013)
RSKT 2013. LNCS
, vol.8171
, pp. 397-404
-
-
Zou, X.1
Wang, G.2
Gou, G.3
Li, H.4
-
6
-
-
79960891365
-
An efficient self-organizing RBF neural network for water quality prediction
-
Han, H.G., Chen, Q., Qiao, J.F.: An efficient self-organizing RBF neural network for water quality prediction. J. Neural Networks 24(7), 717–725 (2011)
-
(2011)
J. Neural Networks
, vol.24
, Issue.7
, pp. 717-725
-
-
Han, H.G.1
Chen, Q.2
Qiao, J.F.3
-
7
-
-
79960837959
-
A Cascaded Fuzzy Inference System for Indian river water quality prediction
-
Mahapatra, S.S., Nanda, S.K., Panigrahy, B.K.: A Cascaded Fuzzy Inference System for Indian river water quality prediction. J. Advances in Engineering Software 42(10), 787–796 (2011)
-
(2011)
J. Advances in Engineering Software
, vol.42
, Issue.10
, pp. 787-796
-
-
Mahapatra, S.S.1
Nanda, S.K.2
Panigrahy, B.K.3
-
9
-
-
80054771704
-
Water Quality Retrieval and Performance Analysis Using Landsat Thermatic Mapper Imagery Based on LS-SVM
-
Huang, W., Huang, F., Song, J.: Water Quality Retrieval and Performance Analysis Using Landsat Thermatic Mapper Imagery Based on LS-SVM. Journal of Software 6(8), 1619–1627 (2011)
-
(2011)
Journal of Software
, vol.6
, Issue.8
, pp. 1619-1627
-
-
Huang, W.1
Huang, F.2
Song, J.3
-
10
-
-
80052261350
-
Support vector machines in water quality management
-
Singh, K.P., Basant, N., Gupta, S.: Support vector machines in water quality management. J. Analytica Chimica Acta 703(2), 152–162 (2011)
-
(2011)
J. Analytica Chimica Acta
, vol.703
, Issue.2
, pp. 152-162
-
-
Singh, K.P.1
Basant, N.2
Gupta, S.3
-
11
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. J. Neuro Computing 50, 159–175 (2003)
-
(2003)
J. Neuro Computing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
13
-
-
80052261350
-
Support vector machines in water quality management
-
Singh, K.P., Basant, N., Gupta, S.: Support vector machines in water quality management. J. Analytica Chimica Acta 703(2), 152–162 (2011)
-
(2011)
J. Analytica Chimica Acta
, vol.703
, Issue.2
, pp. 152-162
-
-
Singh, K.P.1
Basant, N.2
Gupta, S.3
-
14
-
-
34547537467
-
Research on hybrid ARIMA and support vector machine model in short term load forecasting
-
He, Y., Zhu, Y., Duan, D.: Research on hybrid ARIMA and support vector machine model in short term load forecasting. In: IEEE Sixth International Conference on Intelligent Systems Design and Applications, ISDA 2006, vol. 1, pp. 804–809 (2006)
-
(2006)
IEEE Sixth International Conference on Intelligent Systems Design and Applications, ISDA 2006
, vol.1
, pp. 804-809
-
-
He, Y.1
Zhu, Y.2
Duan, D.3
-
15
-
-
84896951924
-
Hybrid of ARIMA and SVMs for short-term load forecasting
-
Nie, H., Liu, G., Liu, X., et al.: Hybrid of ARIMA and SVMs for short-term load forecasting. J. Energy Procedia 16, 1455–1460 (2012)
-
(2012)
J. Energy Procedia
, vol.16
, pp. 1455-1460
-
-
Nie, H.1
Liu, G.2
Liu, X.3
-
16
-
-
84867052229
-
Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
-
Zhu, B., Wei, Y.: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. J. Omega 41(3), 517–524 (2013)
-
(2013)
J. Omega
, vol.41
, Issue.3
, pp. 517-524
-
-
Zhu, B.1
Wei, Y.2
-
17
-
-
84898881870
-
Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models
-
Ming, W., Bao, Y., Hu, Z., et al.: Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models. The Scientific World Journal 2014 (2014)
-
(2014)
The Scientific World Journal
, pp. 2014
-
-
Ming, W.1
Bao, Y.2
Hu, Z.3
-
20
-
-
0033174101
-
Some simulations and applications of forecasting long-memory time-series models
-
Reisen, V.A., Lopes, S.: Some simulations and applications of forecasting long-memory time-series models. Journal of Statistical Planning and Inference 80(1), 269–287 (1999)
-
(1999)
Journal of Statistical Planning and Inference
, vol.80
, Issue.1
, pp. 269-287
-
-
Reisen, V.A.1
Lopes, S.2
-
21
-
-
0037199712
-
River flow forecasting: Use of phasespace reconstruction and artificial neural networks approaches
-
Sivakumar, B., Jayawardena, A.W., Fernando, T.: River flow forecasting: use of phasespace reconstruction and artificial neural networks approaches. Journal of Hydrology 265(1), 225–245 (2002)
-
(2002)
Journal of Hydrology
, vol.265
, Issue.1
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.3
|