메뉴 건너뛰기




Volumn 18, Issue 5-6, 2005, Pages 781-789

A comparative study of autoregressive neural network hybrids

Author keywords

ARIMA; Hybrid architectures; Seasonal time series; Time delay neural networks

Indexed keywords

COMPUTER ARCHITECTURE; FORECASTING; MATHEMATICAL MODELS; REGRESSION ANALYSIS; SET THEORY;

EID: 27744467138     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.06.003     Document Type: Conference Paper
Times cited : (184)

References (33)
  • 2
    • 0000133998 scopus 로고    scopus 로고
    • An analysis of transformations
    • G.-E.-P. Box, and D.-R. Cox An analysis of transformations JRSS B 26 1996 211 246
    • (1996) JRSS B , vol.26 , pp. 211-246
    • Box, G.-E.-P.1    Cox, D.-R.2
  • 3
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: a survey and categorisation Information Fusion 6 1 2005 5 20
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 5
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R. Clemen Combining forecasts: a review and annotated bibliography International Journal of Forecasting 5 1989 559 583
    • (1989) International Journal of Forecasting , vol.5 , pp. 559-583
    • Clemen, R.1
  • 6
    • 0031237543 scopus 로고    scopus 로고
    • Time delay-neural networks: Representation and induction of finitestate machines
    • D. Clouse, C. Giles, and G. Horne Time delay-neural networks: Representation and induction of finitestate machines IEEE Transactions on Neural Networks 8 5 1997 1065 1070
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1065-1070
    • Clouse, D.1    Giles, C.2    Horne, G.3
  • 8
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. Elman Finding structure in time Cognitive Science 14 1990 179 211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1
  • 10
    • 0000254299 scopus 로고    scopus 로고
    • Trends, cycles and autoregressions
    • A. Harvey Trends, cycles and autoregressions The Economic Journal 107 1 1997 192 201
    • (1997) The Economic Journal , vol.107 , Issue.1 , pp. 192-201
    • Harvey, A.1
  • 13
    • 11944258430 scopus 로고    scopus 로고
    • To combine or not to combine: Selecting among forecasts and their combinations
    • M. Hibon, and T. Evgeniou To combine or not to combine: selecting among forecasts and their combinations International Journal of Forecasting 21 2005 15 24
    • (2005) International Journal of Forecasting , vol.21 , pp. 15-24
    • Hibon, M.1    Evgeniou, T.2
  • 14
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • C. Hurvich, J. Simonoff, and C.-L. Tsai Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion Journal of the Royal Statistical Society: Series B 60 2 1998 271 293
    • (1998) Journal of the Royal Statistical Society: Series B , vol.60 , Issue.2 , pp. 271-293
    • Hurvich, C.1    Simonoff, J.2    Tsai, C.-L.3
  • 17
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: Should the data be deseasonalized first?
    • M. Nelson, T. Hill, W. Remus, and M. O'Connor Time series forecasting using neural networks: should the data be deseasonalized first? Journal of Forecasting 18 1999 359 367
    • (1999) Journal of Forecasting , vol.18 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3    O'Connor, M.4
  • 18
    • 0003299258 scopus 로고
    • An introduction to bispectral analysis and bilinear time series models
    • T.-S. Rao, and M.-M. Sabr An introduction to bispectral analysis and bilinear time series models Lecture Notes in Statistics 1984 24
    • (1984) Lecture Notes in Statistics , pp. 24
    • Rao, T.-S.1    Sabr, M.-M.2
  • 22
    • 15244348550 scopus 로고    scopus 로고
    • Pre-processing inputs for optimally-configured time-delay neural networks
    • T. Taskaya-Temizel, M.-C. Casey, and K. Ahmad Pre-processing inputs for optimally-configured time-delay neural networks IEE Electronic Letters 41 2005 198 200
    • (2005) IEE Electronic Letters , vol.41 , pp. 198-200
    • Taskaya-Temizel, T.1    Casey, M.-C.2    Ahmad, K.3
  • 23
    • 0036074753 scopus 로고    scopus 로고
    • Combined forecasts from linear and nonlinear time series models
    • N. Terui, and H. van Dijk Combined forecasts from linear and nonlinear time series models International Journal of Forecasting 18 2002 421 438
    • (2002) International Journal of Forecasting , vol.18 , pp. 421-438
    • Terui, N.1    Van Dijk, H.2
  • 31
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • G.-P. Zhang Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159 175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.-P.1
  • 32
    • 0035364957 scopus 로고    scopus 로고
    • Time series forecasting with neural network ensembles: An application for exchange rate prediction
    • G.-P. Zhang, and V. Berardi Time series forecasting with neural network ensembles: an application for exchange rate prediction Journal of the Operational Research Society 52 2001 652 664
    • (2001) Journal of the Operational Research Society , vol.52 , pp. 652-664
    • Zhang, G.-P.1    Berardi, V.2
  • 33
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • G.-P. Zhang, and M. Qi Neural network forecasting for seasonal and trend time series European Journal of Operational Research 160 2 2005 501 514
    • (2005) European Journal of Operational Research , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.-P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.