메뉴 건너뛰기




Volumn 4, Issue 1, 2016, Pages 40-59

A Primer on Inverse Probability of Treatment Weighting and Marginal Structural Models

Author keywords

causal inference; confounding; inverse probability of treatment weights (IPTWs); marginal structural models (MSMs); propensity scores

Indexed keywords


EID: 84954508678     PISSN: 21676968     EISSN: 21676984     Source Type: Journal    
DOI: 10.1177/2167696815621645     Document Type: Article
Times cited : (172)

References (65)
  • 2
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • P.Austin (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine, 27, 2037–2049.
    • (2008) Statistics in Medicine , vol.27 , pp. 2037-2049
    • Austin, P.1
  • 3
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity score methods for reducing the effects of confounding in observational studies
    • P.Austin (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46, 399–424.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 399-424
    • Austin, P.1
  • 5
    • 33646480615 scopus 로고    scopus 로고
    • Assessing the total effect of time-varying predictors in prevention research
    • 10.1007/s11121-005-0023-0
    • B.BrayD.AlmirallR.ZimmermanD.LynamS.Murphy (2006). Assessing the total effect of time-varying predictors in prevention research. Prevention Science, 7, 1–17. 10.1007/s11121-005-0023-0
    • (2006) Prevention Science , vol.7 , pp. 1-17
    • Bray, B.1    Almirall, D.2    Zimmerman, R.3    Lynam, D.4    Murphy, S.5
  • 6
    • 38849182246 scopus 로고    scopus 로고
    • Some practical guidance for the implementation of propensity score matching
    • M.CaliendoS.Kopeinig (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22, 31–72.
    • (2008) Journal of Economic Surveys , vol.22 , pp. 31-72
    • Caliendo, M.1    Kopeinig, S.2
  • 8
    • 84861176367 scopus 로고    scopus 로고
    • Assessing mediation using marginal structural models in the presence of confounding and moderation
    • D.CoffmanW.Zhong (2012). Assessing mediation using marginal structural models in the presence of confounding and moderation. Psychological Methods, 17, 642–664.
    • (2012) Psychological Methods , vol.17 , pp. 642-664
    • Coffman, D.1    Zhong, W.2
  • 9
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • S.ColeM.Hernán (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168, 656–664.
    • (2008) American Journal of Epidemiology , vol.168 , pp. 656-664
    • Cole, S.1    Hernán, M.2
  • 13
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • R.D’Agostino (1998). Tutorial in biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine, 17, 2265–2281.
    • (1998) Statistics in Medicine , vol.17 , pp. 2265-2281
    • D’Agostino, R.1
  • 15
    • 84855817938 scopus 로고    scopus 로고
    • gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula
    • R.DanielB.De StavolaS.Cousens (2011). gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. Stata Journal, 11, 479–517.
    • (2011) Stata Journal , vol.11 , pp. 479-517
    • Daniel, R.1    De Stavola, B.2    Cousens, S.3
  • 16
    • 0036102924 scopus 로고    scopus 로고
    • Propensity score-matching methods for nonexperimental causal studies
    • R.DehejiaS.Wahba (2002). Propensity score-matching methods for nonexperimental causal studies. Review of Economics and Statistics, 84, 151–161.
    • (2002) Review of Economics and Statistics , vol.84 , pp. 151-161
    • Dehejia, R.1    Wahba, S.2
  • 17
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratification bias
    • S.Greenland (2003). Quantifying biases in causal models: Classical confounding vs collider-stratification bias. Epidemiology, 14, 300–306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 18
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • 10.2307/3702180
    • S.GreenlandJ.PearlJ.Robins (1999). Causal diagrams for epidemiologic research. Epidemiology, 10, 37–48. 10.2307/3702180
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.3
  • 19
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • 10.1093/ije/15.3.413
    • S.GreenlandJ.Robins (1986). Identifiability, exchangeability, and epidemiological confounding. International Journal of Epidemiology, 15, 413–419. 10.1093/ije/15.3.413
    • (1986) International Journal of Epidemiology , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.2
  • 20
    • 84866282156 scopus 로고    scopus 로고
    • (U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 252), Berkeley California: Berkeley Electronic Press
    • S.GruberM.J.van der Laan (2009). Targeted maximum likelihood estimation: A gentle introduction(U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 252)Berkeley California: Berkeley Electronic Press.
    • (2009) Targeted maximum likelihood estimation: A gentle introduction
    • Gruber, S.1    van der Laan, M.J.2
  • 22
    • 85020723922 scopus 로고    scopus 로고
    • Estimation of causal effects of binary treatments in unconfounded studies with one continuous covariate
    • 10.1177/0962280215570722
    • R.GutmanD.B.Rubin (2015). Estimation of causal effects of binary treatments in unconfounded studies with one continuous covariate. Statistical Methods in Medical Research. 10.1177/0962280215570722
    • (2015) Statistical Methods in Medical Research
    • Gutman, R.1    Rubin, D.B.2
  • 23
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • M.HernánB.BrumbackJ.Robins (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology, 11, 561–570.
    • (2000) Epidemiology , vol.11 , pp. 561-570
    • Hernán, M.1    Brumback, B.2    Robins, J.3
  • 24
    • 0345827892 scopus 로고    scopus 로고
    • Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies
    • 10.1191/0962280204sm351ra
    • J.HoganT.Lancaster (2004). Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. Statistical Methods in Medical Research, 13, 17–48. 10.1191/0962280204sm351ra
    • (2004) Statistical Methods in Medical Research , vol.13 , pp. 17-48
    • Hogan, J.1    Lancaster, T.2
  • 26
    • 0000250624 scopus 로고
    • Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California: University of California Press,,. In (Eds.),, (pp
    • P.Huber (1967). The behavior of maximum likelihood estimates under non-standard conditions. In (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 221–233). Berkeley, California: University of California Press.
    • (1967) The behavior of maximum likelihood estimates under non-standard conditions , pp. 221-233
    • Huber, P.1
  • 27
    • 84856187945 scopus 로고    scopus 로고
    • Causal inference without balance checking: Coarsened exact matching
    • S.IacusG.KingG.Porro (2011). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20, 1–24.
    • (2011) Political Analysis , vol.20 , pp. 1-24
    • Iacus, S.1    King, G.2    Porro, G.3
  • 29
    • 84858195892 scopus 로고    scopus 로고
    • Military training and personality trait development: Does the military make the man, or does the man make the military?
    • 10.1177/0956797611423545
    • J.JacksonF.ThoemmesK.JonkmannO.LüdtkeU.Trautwein (2012). Military training and personality trait development: Does the military make the man, or does the man make the military?Psychological Science, 23, 270–277. 10.1177/0956797611423545
    • (2012) Psychological Science , vol.23 , pp. 270-277
    • Jackson, J.1    Thoemmes, F.2    Jonkmann, K.3    Lüdtke, O.4    Trautwein, U.5
  • 30
    • 84895148962 scopus 로고    scopus 로고
    • Personality traits and living arrangements in young adulthood: Selection and socialization
    • K.JonkmannF.ThoemmesO.LüdtkeU.Trautwein (2014). Personality traits and living arrangements in young adulthood: Selection and socialization. Developmental Psychology, 50, 683–698.
    • (2014) Developmental Psychology , vol.50 , pp. 683-698
    • Jonkmann, K.1    Thoemmes, F.2    Lüdtke, O.3    Trautwein, U.4
  • 31
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • J.KangJ.Schafer (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22, 523–539.
    • (2007) Statistical Science , vol.22 , pp. 523-539
    • Kang, J.1    Schafer, J.2
  • 32
    • 31344479653 scopus 로고    scopus 로고
    • The dangers of extreme counterfactuals
    • 10.1093/pan/mpj004
    • G.KingL.Zeng (2006). The dangers of extreme counterfactuals. Political Analysis, 14, 131–159. 10.1093/pan/mpj004
    • (2006) Political Analysis , vol.14 , pp. 131-159
    • King, G.1    Zeng, L.2
  • 33
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • 10.1002/sim.3782
    • B.LeeJ.LesslerE.Stuart (2010). Improving propensity score weighting using machine learning. Statistics in Medicine, 29, 337–346. 10.1002/sim.3782
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.1    Lessler, J.2    Stuart, E.3
  • 34
    • 28444464482 scopus 로고    scopus 로고
    • Propensity scores: An introduction and experimental test
    • 10.1177/0193841x05275596
    • J.LuellenW.ShadishM.Clark (2005). Propensity scores: An introduction and experimental test. Evaluation Review, 29, 530–558. 10.1177/0193841x05275596
    • (2005) Evaluation Review , vol.29 , pp. 530-558
    • Luellen, J.1    Shadish, W.2    Clark, M.3
  • 35
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • D.McCaffreyG.RidgewayA.Morral (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403–425.
    • (2004) Psychological Methods , vol.9 , pp. 403-425
    • McCaffrey, D.1    Ridgeway, G.2    Morral, A.3
  • 36
    • 84899011648 scopus 로고    scopus 로고
    • Graphical models for inference with missing data
    • Red Hook, NY: Curran Associates,,. In (Eds.),, (pp
    • K.MohanJ.PearlJ.Tian (2013). Graphical models for inference with missing data. In (Eds.), Advances in Neural Information Processing Systems (pp. 1277–1285). Red Hook, NY: Curran Associates.
    • (2013) Advances in Neural Information Processing Systems , pp. 1277-1285
    • Mohan, K.1    Pearl, J.2    Tian, J.3
  • 37
    • 67549105887 scopus 로고    scopus 로고
    • Letter to the editor: Remarks on the method of propensity score
    • J.Pearl (2009). Letter to the editor: Remarks on the method of propensity score. Statistics in Medicine, 28, 1415–1424.
    • (2009) Statistics in Medicine , vol.28 , pp. 1415-1424
    • Pearl, J.1
  • 38
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect
    • J.Robins (1986). A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Mathematical Modelling, 7, 1393–1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 39
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • J.RobinsM.HernánB.Brumback (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.1    Hernán, M.2    Brumback, B.3
  • 40
    • 0001198982 scopus 로고
    • The consquences of adjustment for a concomitant variable that has been affected by the treatment
    • 10.2307/2981697
    • P.Rosenbaum (1984). The consquences of adjustment for a concomitant variable that has been affected by the treatment. Journal of the Royal Statistical Society: Series A (General), 147, 656–666. 10.2307/2981697
    • (1984) Journal of the Royal Statistical Society: Series A (General) , vol.147 , pp. 656-666
    • Rosenbaum, P.1
  • 41
  • 42
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • 10.1093/biomet/70.1.41
    • P.RosenbaumD.Rubin (1983b). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55. 10.1093/biomet/70.1.41
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 43
    • 85144841000 scopus 로고
    • Using multivariate matched sampling and regression adjustment to control bias in observational studies
    • D.Rubin (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. Journal of the American Statistical Association, 74, 318–328.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 318-328
    • Rubin, D.1
  • 44
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • D.Rubin (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169–188.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 169-188
    • Rubin, D.1
  • 46
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • J.SchaferJ.Kang (2008). Average causal effects from nonrandomized studies: A practical guide and simulated example. Psychological Methods, 13, 279.
    • (2008) Psychological Methods , vol.13 , pp. 279
    • Schafer, J.1    Kang, J.2
  • 47
    • 79961226937 scopus 로고    scopus 로고
    • Multivariate and propensity score matching software with automated balance optimization: The matching package for R
    • J.Sekhon (2011). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Software, 42, 1–52.
    • (2011) Journal of Statistical Software , vol.42 , pp. 1-52
    • Sekhon, J.1
  • 48
    • 67549095644 scopus 로고    scopus 로고
    • Propensity scores and m-structures
    • A.Sjölander (2009). Propensity scores and m-structures. Statistics in Medicine, 28, 1416–1420.
    • (2009) Statistics in Medicine , vol.28 , pp. 1416-1420
    • Sjölander, A.1
  • 49
    • 40949090705 scopus 로고    scopus 로고
    • G-estimation of causal effects, allowing for time-varying confounding
    • J.SterneK.Tilling (2002). G-estimation of causal effects, allowing for time-varying confounding. Stata Journal, 2, 164–182.
    • (2002) Stata Journal , vol.2 , pp. 164-182
    • Sterne, J.1    Tilling, K.2
  • 50
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • E.Stuart (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25, 1–21.
    • (2010) Statistical Science , vol.25 , pp. 1-21
    • Stuart, E.1
  • 52
    • 79951805837 scopus 로고    scopus 로고
    • A systematic review of propensity score methods in the social sciences
    • 10.1080/00273171.2011.540475
    • F.ThoemmesE.-S.Kim (2011). A systematic review of propensity score methods in the social sciences. Multivariate Behavioral Research, 46, 90–118. 10.1080/00273171.2011.540475
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 90-118
    • Thoemmes, F.1    Kim, E.-S.2
  • 54
    • 84907470143 scopus 로고    scopus 로고
    • A cautious note on auxiliary variables that can increase bias in missing data problems
    • F.ThoemmesN.Rose (2014). A cautious note on auxiliary variables that can increase bias in missing data problems. Multivariate Behavioral Research, 49, 443–459.
    • (2014) Multivariate Behavioral Research , vol.49 , pp. 443-459
    • Thoemmes, F.1    Rose, N.2
  • 57
    • 43749091286 scopus 로고    scopus 로고
    • Sensitivity analysis: Distributional assumptions and confounding assumptions
    • T.VanderWeele (2008). Sensitivity analysis: Distributional assumptions and confounding assumptions. Biometrics, 64, 645–649.
    • (2008) Biometrics , vol.64 , pp. 645-649
    • VanderWeele, T.1
  • 58
    • 78650778119 scopus 로고    scopus 로고
    • Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders
    • T.VanderWeeleO.A.Arah (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders. Epidemiology (Cambridge, Mass.), 22, 42–52.
    • (2011) Epidemiology (Cambridge, Mass.) , vol.22 , pp. 42-52
    • VanderWeele, T.1    Arah, O.A.2
  • 59
    • 79953730782 scopus 로고    scopus 로고
    • A marginal structural model analysis for loneliness: Implications for intervention trials and clinical practice
    • T.VanderWeeleL.HawkleyR.ThistedJ.Cacioppo (2011). A marginal structural model analysis for loneliness: Implications for intervention trials and clinical practice. Journal of Consulting and Clinical Psychology, 79, 225–235.
    • (2011) Journal of Consulting and Clinical Psychology , vol.79 , pp. 225-235
    • VanderWeele, T.1    Hawkley, L.2    Thisted, R.3    Cacioppo, J.4
  • 60
    • 84998630701 scopus 로고    scopus 로고
    • On regression adjustment for the propensity score
    • S.VansteelandtR.Daniel (2014). On regression adjustment for the propensity score. Statistics in Medicine, 33, 4053–4072.
    • (2014) Statistics in Medicine , vol.33 , pp. 4053-4072
    • Vansteelandt, S.1    Daniel, R.2
  • 61
    • 0033632192 scopus 로고    scopus 로고
    • Two years after a job loss: Long-term impact of the JOBS program on reemployment and mental health
    • A.VinokurY.SchulJ.VuoriR.Price (2000). Two years after a job loss: Long-term impact of the JOBS program on reemployment and mental health. Journal of Occupational Health Psychology, 5, 32–47.
    • (2000) Journal of Occupational Health Psychology , vol.5 , pp. 32-47
    • Vinokur, A.1    Schul, Y.2    Vuori, J.3    Price, R.4
  • 63
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • D.WestreichJ.LesslerM.Jonsson Funk (2010). Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology, 63, 826–833.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Jonsson Funk, M.3
  • 64
    • 0000095552 scopus 로고
    • A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
    • H.White (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 48, 817–838.
    • (1980) Econometrica: Journal of the Econometric Society , vol.48 , pp. 817-838
    • White, H.1
  • 65
    • 84938746620 scopus 로고    scopus 로고
    • A boosting algorithm for estimating generalized propensity scores with continuous treatments
    • Y.ZhuD.L.CoffmanD.Ghosh (2015). A boosting algorithm for estimating generalized propensity scores with continuous treatments. Journal of Causal Inference, 3, 25–40.
    • (2015) Journal of Causal Inference , vol.3 , pp. 25-40
    • Zhu, Y.1    Coffman, D.L.2    Ghosh, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.