메뉴 건너뛰기




Volumn 22, Issue 1, 2011, Pages 42-52

Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; EPIDEMIOLOGY; MATHEMATICAL PHENOMENA; OBSERVATIONAL STUDY; OUTCOME ASSESSMENT; PRIORITY JOURNAL; RISK; SENSITIVITY ANALYSIS; STATISTICAL ANALYSIS; SYSTEMATIC ERROR;

EID: 78650778119     PISSN: 10443983     EISSN: None     Source Type: Journal    
DOI: 10.1097/EDE.0b013e3181f74493     Document Type: Article
Times cited : (341)

References (46)
  • 1
    • 84947380923 scopus 로고
    • Components of a difference between two rates
    • Kitagawa EM. Components of a difference between two rates. J Am Stat Assoc. 1955;50:1168-1194.
    • (1955) J Am Stat Assoc , vol.50 , pp. 1168-1194
    • Kitagawa, E.M.1
  • 3
    • 0013916535 scopus 로고
    • Spurious effects from an extraneous variable
    • Bross ID. Spurious effects from an extraneous variable. J Chronic Dis. 1966;19:637-647.
    • (1966) J Chronic Dis , vol.19 , pp. 637-647
    • Bross, I.D.1
  • 4
    • 0017989533 scopus 로고
    • Assessing effects of confounding variables
    • Schlesselman JJ. Assessing effects of confounding variables. Am J Epidemiol. 1978;108:3-8.
    • (1978) Am J Epidemiol , vol.108 , pp. 3-8
    • Schlesselman, J.J.1
  • 5
    • 0003492892 scopus 로고
    • Statistical Methods in Cancer Research Lyon: International Agency for Research on Cancer chap 3
    • Breslow NE, Day NE. Statistical Methods in Cancer Research. Vol 1: The Analysis of Case-Control Studies. Lyon: International Agency for Research on Cancer; 1980: chap 3.
    • (1980) The Analysis of Case-Control Studies , vol.1
    • Breslow, N.E.1    Day, N.E.2
  • 6
    • 0001679041 scopus 로고
    • Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
    • Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J R Stat Soc Series B. 1983;45:212-218.
    • (1983) J R Stat Soc Series B , vol.45 , pp. 212-218
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 7
    • 0013140520 scopus 로고
    • Case-control studies: Assessing the effect of a confounding factor
    • Yanagawa T. Case-control studies: assessing the effect of a confounding factor. Biometrika. 1984;71:191-194.
    • (1984) Biometrika , vol.71 , pp. 191-194
    • Yanagawa, T.1
  • 8
    • 0023854912 scopus 로고
    • Indirect corrections for confounding under multiplicative and additive risk models
    • Gail MH, Wacholder S, Lubin JH. Indirect corrections for confounding under multiplicative and additive risk models. Am J Ind Med. 1988;13: 119-130.
    • (1988) Am J Ind Med , vol.13 , pp. 119-130
    • Gail, M.H.1    Wacholder, S.2    Lubin, J.H.3
  • 9
    • 0025160334 scopus 로고
    • Indirect assessment of confounding: Graphic description and limits on effect of adjusting for covariates
    • Flanders WD, Khoury MJ. Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology. 1990;1:239-246.
    • (1990) Epidemiology , vol.1 , pp. 239-246
    • Flanders, W.D.1    Khoury, M.J.2
  • 10
  • 11
    • 0031661402 scopus 로고    scopus 로고
    • Assessing the sensitivity of regression results to unmeasured confounders in observational studies
    • Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics. 1998;54:948-963.
    • (1998) Biometrics , vol.54 , pp. 948-963
    • Lin, D.Y.1    Psaty, B.M.2    Kronmal, R.A.3
  • 12
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
    • Halloran E, Berry D, eds New York: Springer-Verlag
    • Robins JM, Scharfstein D, Rotnitzky A. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Halloran E, Berry D, eds. Statistical Models for Epidemiology, the Environment, and Clinical Trials. New York: Springer-Verlag; 2000:1-95.
    • (2000) Statistical Models for Epidemiology, the Environment, and Clinical Trials , pp. 1-95
    • Robins, J.M.1    Scharfstein, D.2    Rotnitzky, A.3
  • 14
    • 1842468142 scopus 로고    scopus 로고
    • Sensitivity to exogeneity assumptions in program evaluation
    • Imbens GW. Sensitivity to exogeneity assumptions in program evaluation. Am Econ Rev. 2003;93:126-132.
    • (2003) Am Econ Rev , vol.93 , pp. 126-132
    • Imbens, G.W.1
  • 15
    • 0037361638 scopus 로고    scopus 로고
    • The impact of prior distributions for uncontrolled confounding and response bias: A case study of the relation of wire codes and magnetic fields to childhood leukemia
    • Greenland S. The impact of prior distributions for uncontrolled confounding and response bias: a case study of the relation of wire codes and magnetic fields to childhood leukemia. J Am Stat Assoc. 2003;98: 47-54.
    • (2003) J Am Stat Assoc , vol.98 , pp. 47-54
    • Greenland, S.1
  • 16
    • 20144383829 scopus 로고    scopus 로고
    • Multiple-bias modeling for analysis of observational data (with discussion)
    • Greenland S. Multiple-bias modeling for analysis of observational data (with discussion). J R Stat Soc Series A. 2005;168:267-308.
    • (2005) J R Stat Soc Series A , vol.168 , pp. 267-308
    • Greenland, S.1
  • 17
    • 1442326306 scopus 로고    scopus 로고
    • Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures
    • Brumback BA, Hernán MA, Haneuse SJ, et al. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Stat Med. 2004;23:749-767.
    • (2004) Stat Med , vol.23 , pp. 749-767
    • Brumback, B.A.1    Hernán, M.A.2    Haneuse, S.J.3
  • 18
    • 24144477605 scopus 로고    scopus 로고
    • Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration
    • Stürmer T, Schneeweiss S, Avorn J, et al. Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration. Am J Epdiemiol. 2005;162:279-289.
    • (2005) Am J Epdiemiol , vol.162 , pp. 279-289
    • Stürmer, T.1    Schneeweiss, S.2    Avorn, J.3
  • 19
    • 34248379740 scopus 로고    scopus 로고
    • Bayesian sensitivity analysis for unmeasured confounding in observational studies
    • McCandless LC, Gustafson P, Levy A. Bayesian sensitivity analysis for unmeasured confounding in observational studies. Stat Med. 2007;26: 2331-2347.
    • (2007) Stat Med , vol.26 , pp. 2331-2347
    • McCandless, L.C.1    Gustafson, P.2    Levy, A.3
  • 20
    • 43749091286 scopus 로고    scopus 로고
    • Sensitivity analysis: Distributional assumptions and confounding assumptions
    • VanderWeele TJ. Sensitivity analysis: distributional assumptions and confounding assumptions. Biometrics. 2008;64:645-649.
    • (2008) Biometrics , vol.64 , pp. 645-649
    • Vanderweele, T.J.1
  • 21
    • 47349085647 scopus 로고    scopus 로고
    • Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders
    • Arah OA, Chiba Y, Greenland S. Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. Ann Epidemiol. 2008;18:637-646.
    • (2008) Ann Epidemiol , vol.18 , pp. 637-646
    • Arah, O.A.1    Chiba, Y.2    Greenland, S.3
  • 23
    • 0000770002 scopus 로고
    • Nonparametric bounds on treatment effects
    • Manski CF. Nonparametric bounds on treatment effects. Am Econ Rev. 1990;80:319-323.
    • (1990) Am Econ Rev , vol.80 , pp. 319-323
    • Manski, C.F.1
  • 24
    • 0000311879 scopus 로고    scopus 로고
    • Monotone treatment response
    • Manski CF. Monotone treatment response. Econometrica. 1997;65: 1311-1334.
    • (1997) Econometrica , vol.65 , pp. 1311-1334
    • Manski, C.F.1
  • 26
    • 20544453910 scopus 로고    scopus 로고
    • Bounding causal effects under uncontrolled confounding using counterfactuals
    • MacLehose RF, Kaufman S, Kaufman JS, et al. Bounding causal effects under uncontrolled confounding using counterfactuals. Epidemiology. 2005;16:548-555.
    • (2005) Epidemiology , vol.16 , pp. 548-555
    • MacLehose, R.F.1    Kaufman, S.2    Kaufman, J.S.3
  • 27
    • 43749094334 scopus 로고    scopus 로고
    • The sign of the bias of unmeasured confounding
    • VanderWeele TJ. The sign of the bias of unmeasured confounding. Biometrics. 2008;64:702-706.
    • (2008) Biometrics , vol.64 , pp. 702-706
    • Vanderweele, T.J.1
  • 28
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688-701.
    • (1974) J Educ Psychol , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 29
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin DB. Bayesian inference for causal effects: the role of randomization. Ann Stat. 1978;6:34-58.
    • (1978) Ann Stat , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 30
    • 38249019870 scopus 로고
    • Formal modes of statistical inference for causal effects
    • Rubin DB. Formal modes of statistical inference for causal effects. J Stat Plann Infer. 1990;25:279-292.
    • (1990) J Stat Plann Infer , vol.25 , pp. 279-292
    • Rubin, D.B.1
  • 32
    • 0020334299 scopus 로고
    • Some aspects of the analysis of covariance
    • Cox DR, McCullagh P. Some aspects of the analysis of covariance. Biometrics. 1982;38:541-561.
    • (1982) Biometrics , vol.38 , pp. 541-561
    • Cox, D.R.1    McCullagh, P.2
  • 33
    • 70349349170 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press
    • Pearl J. Causality. Cambridge: Cambridge University Press; 2009.
    • (2009) Causality
    • Pearl, J.1
  • 34
    • 77951622706 scopus 로고
    • The central role of propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of propensity score in observational studies for causal effects. Biometrika. 1983;70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 35
    • 0028799430 scopus 로고
    • In-utero exposure to pheno-barbital and intelligence deficits in adult men
    • Reinisch J, Sanders S, Mortensen E, et al. In-utero exposure to pheno-barbital and intelligence deficits in adult men. J Am Med Assoc. 1995; 274:1518-1525.
    • (1995) J Am Med Assoc , vol.274 , pp. 1518-1525
    • Reinisch, J.1    Sanders, S.2    Mortensen, E.3
  • 36
    • 84945581878 scopus 로고
    • Constructing a control group using multi-variate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB. Constructing a control group using multi- variate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39:33-38
    • (1985) Am Stat , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 37
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiologic data
    • Hernan MA, Robins JM. Estimating causal effects from epidemiologic data. J Epidemiol Community Health. 2006;60:578-586.
    • (2006) J Epidemiol Community Health , vol.60 , pp. 578-586
    • Hernan, M.A.1    Robins, J.M.2
  • 38
    • 0027967406 scopus 로고
    • An evaluation of the Kessner Adequacy of Prenatal Care Index and a proposed Adequacy of Prenatal Care Utilization Index
    • Kotelchuck M. An evaluation of the Kessner adequacy of prenatal care index and a proposed adequacy of prenatal care utilization index. Am J Public Health. 1994;84:1414-1420. (Pubitemid 24290938)
    • (1994) American Journal of Public Health , vol.84 , Issue.9 , pp. 1414-1420
    • Kotelchuck, M.1
  • 39
    • 60549085737 scopus 로고    scopus 로고
    • A comparison of four prenatal care indices in birth outcome models: Comparable results for predicting small-for-gestational-age outcome but different results for preterm birth or infant mortality
    • VanderWeele TJ, Lantos JD, Siddique J, et al. A comparison of four prenatal care indices in birth outcome models: comparable results for predicting small-for-gestational-age outcome but different results for preterm birth or infant mortality. J Clin Epidemiol. 2009;62:438-445.
    • (2009) J Clin Epidemiol , vol.62 , pp. 438-445
    • Vanderweele, T.J.1    Lantos, J.D.2    Siddique, J.3
  • 41
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994;89:846-866.
    • (1994) J Am Stat Assoc , vol.89 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 42
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61:692-972.
    • (2005) Biometrics , vol.61 , pp. 692-972
    • Bang, H.1    Robins, J.M.2
  • 43
    • 33846066470 scopus 로고    scopus 로고
    • A distributional approach for causal inference using propensity scores
    • Tan Z. A distributional approach for causal inference using propensity scores. J Am Stat Assoc. 2006;101:1619-1637.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1619-1637
    • Tan, Z.1
  • 44
    • 69249196484 scopus 로고    scopus 로고
    • Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
    • Cao W, Tsiatis AA, Davidian M. Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika. 2009;96:723-734.
    • (2009) Biometrika , vol.96 , pp. 723-734
    • Cao, W.1    Tsiatis, A.A.2    Davidian, M.3
  • 45
    • 0033302078 scopus 로고    scopus 로고
    • Assessing the sensitivity of regression results to unmeasured confounders in observational studies [letter]
    • Hernan M, Robins JM. Assessing the sensitivity of regression results to unmeasured confounders in observational studies [letter]. Biometrics. 1999;55:1316-1317.
    • (1999) Biometrics , vol.55 , pp. 1316-1317
    • Hernan, M.1    Robins, J.M.2
  • 46
    • 37549071382 scopus 로고    scopus 로고
    • Simple formulas for gauging the potential impacts of population stratification bias
    • Lee WC, Wang LY. Simple formulas for gauging the potential impacts of population stratification bias. Am J Epidemiol. 2008;167:86-89.
    • (2008) Am J Epidemiol , vol.167 , pp. 86-89
    • Lee, W.C.1    Wang, L.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.