메뉴 건너뛰기




Volumn 110, Issue 512, 2015, Pages 1562-1576

Bayesian Factorizations of Big Sparse Tensors

Author keywords

Bayesian; Categorical data; Contingency table; Log linear model; Low rank; PARAFAC; Sparsity; Tensor factorization

Indexed keywords


EID: 84954446636     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.983233     Document Type: Article
Times cited : (62)

References (39)
  • 2
    • 84902471524 scopus 로고    scopus 로고
    • Variable Selection With Exponential Weights and Penalization
    • E.Arias-Castro,, and K.Lounici, (2012), “Variable Selection With Exponential Weights and -Penalization,” Electronic Journal of Statistics 8, 328–354.
    • (2012) Electronic Journal of Statistics , vol.8 , pp. 328-354
    • Arias-Castro, E.1    Lounici, K.2
  • 3
    • 84878094378 scopus 로고    scopus 로고
    • Generalized Double Pareto Shrinkage
    • A.Armagan,, D.Dunson,, and J.Lee, (2013a), “Generalized Double Pareto Shrinkage,” Statistica Sinica, 23, 119–143.
    • (2013) Statistica Sinica , vol.23 , pp. 119-143
    • Armagan, A.1    Dunson, D.2    Lee, J.3
  • 4
    • 84890406464 scopus 로고    scopus 로고
    • Posterior Consistency in Linear Models Under Shrinkage Priors
    • A.Armagan,, D.B.Dunson,, J.Lee,, W.U.Bajwa,, and N.Strawn, (2013b), “Posterior Consistency in Linear Models Under Shrinkage Priors,” Biometrika, 100, 1011–1018.
    • (2013) Biometrika , vol.100 , pp. 1011-1018
    • Armagan, A.1    Dunson, D.B.2    Lee, J.3    Bajwa, W.U.4    Strawn, N.5
  • 5
    • 0038702584 scopus 로고    scopus 로고
    • Adaptive Bayesian Inference on the Mean of an Infinite-Dimensional Normal Distribution
    • E.Belitser,, and S.Ghosal, (2003), “Adaptive Bayesian Inference on the Mean of an Infinite-Dimensional Normal Distribution,” The Annals of Statistics, 31, 536–559.
    • (2003) The Annals of Statistics , vol.31 , pp. 536-559
    • Belitser, E.1    Ghosal, S.2
  • 6
    • 79957827711 scopus 로고    scopus 로고
    • Sparse Bayesian Infinite Factor Models
    • A.Bhattacharya,, and D.Dunson, (2011), “Sparse Bayesian Infinite Factor Models,” Biometrika, 98, 291–306.
    • (2011) Biometrika , vol.98 , pp. 291-306
    • Bhattacharya, A.1    Dunson, D.2
  • 7
    • 82655181330 scopus 로고    scopus 로고
    • Bernstein–von Mises Theorems for Gaussian Regression With Increasing Number of Regressors
    • D.Bontemps, (2011), “Bernstein–von Mises Theorems for Gaussian Regression With Increasing Number of Regressors,” The Annals of Statistics, 39, 2557–2584.
    • (2011) The Annals of Statistics , vol.39 , pp. 2557-2584
    • Bontemps, D.1
  • 10
    • 77952811536 scopus 로고    scopus 로고
    • The Horseshoe Estimator for Sparse Signals
    • C.Carvalho,, N.Polson,, and J.Scott, (2010), “The Horseshoe Estimator for Sparse Signals,” Biometrika, 97, 465–480.
    • (2010) Biometrika , vol.97 , pp. 465-480
    • Carvalho, C.1    Polson, N.2    Scott, J.3
  • 11
    • 84871997969 scopus 로고    scopus 로고
    • Needles and Straws in a Haystack: Posterior Concentration for Possibly Sparse Sequences
    • I.Castillo,, and A.van der Vaart, (2012), “Needles and Straws in a Haystack: Posterior Concentration for Possibly Sparse Sequences,” The Annals of Statistics, 40, 2069–2101.
    • (2012) The Annals of Statistics , vol.40 , pp. 2069-2101
    • Castillo, I.1    van der Vaart, A.2
  • 12
    • 70349773472 scopus 로고    scopus 로고
    • Nonparametric Bayes Modeling of Multivariate Categorical Data
    • D.B.Dunson,, and C.Xing, (2009), “Nonparametric Bayes Modeling of Multivariate Categorical Data,” Journal of the American Statistical Association, 104, 1042–1051.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 1042-1051
    • Dunson, D.B.1    Xing, C.2
  • 13
    • 34447516910 scopus 로고    scopus 로고
    • Three Centuries of Categorical Data Analysis: Log-Linear Models and Maximum Likelihood Estimation
    • S.Fienberg,, and A.Rinaldo, (2007), “Three Centuries of Categorical Data Analysis: Log-Linear Models and Maximum Likelihood Estimation,” Journal of Statistical Planning and Inference, 137, 3430–3445.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 3430-3445
    • Fienberg, S.1    Rinaldo, A.2
  • 14
    • 33645714440 scopus 로고    scopus 로고
    • On Consistency of Bayesian Inference With Mixtures of Logistic Regression
    • Y.Ge,, and W.Jiang, (2006), “On Consistency of Bayesian Inference With Mixtures of Logistic Regression,” Neural Computation, 18, 224–243.
    • (2006) Neural Computation , vol.18 , pp. 224-243
    • Ge, Y.1    Jiang, W.2
  • 15
    • 84865371361 scopus 로고    scopus 로고
    • A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models
    • A.Gelman,, A.Jakulin,, M.Pittau,, and Y.Su, (2008), “A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models,” Annals of Applied Statistics, 2, 1360–1383.
    • (2008) Annals of Applied Statistics , vol.2 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.3    Su, Y.4
  • 16
    • 0012224228 scopus 로고    scopus 로고
    • Asymptotic Normality of Posterior Distributions in High-Dimensional Linear Models
    • S.Ghosal, (1999), “Asymptotic Normality of Posterior Distributions in High-Dimensional Linear Models,” Bernoulli, 5, 315–331.
    • (1999) Bernoulli , vol.5 , pp. 315-331
    • Ghosal, S.1
  • 17
    • 0347117630 scopus 로고    scopus 로고
    • Asymptotic Normality of Posterior Distributions for Exponential Families When the Number of Parameters Tends to Infinity
    • ——— (2000), “Asymptotic Normality of Posterior Distributions for Exponential Families When the Number of Parameters Tends to Infinity,” Journal of Multivariate Analysis, 74, 49–68.
    • (2000) Journal of Multivariate Analysis , vol.74 , pp. 49-68
  • 19
    • 84855983669 scopus 로고    scopus 로고
    • Elastic Net Regression Modeling With the Orthant Normal Prior
    • C.Hans, (2011), “Elastic Net Regression Modeling With the Orthant Normal Prior,” Journal of the American Statistical Association, 106, 1383–1393.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1383-1393
    • Hans, C.1
  • 20
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanatory’ Multi-Modal Factor Analysis
    • R.Harshman, (1970), “Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanatory’ Multi-Modal Factor Analysis,” UCLA Working Papers in Phonetics, 16, 1–84.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.1
  • 21
    • 50449090913 scopus 로고    scopus 로고
    • Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of the Fitted Densities
    • W.Jiang, (2007), “Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of the Fitted Densities,” The Annals of Statistics, 35, 1487–1511.
    • (2007) The Annals of Statistics , vol.35 , pp. 1487-1511
    • Jiang, W.1
  • 22
    • 68649096448 scopus 로고    scopus 로고
    • Tensor Decompositions and Applications
    • T.Kolda,, and B.Bader, (2009), “Tensor Decompositions and Applications,” SIAM Review, 51, 455–500.
    • (2009) SIAM Review , vol.51 , pp. 455-500
    • Kolda, T.1    Bader, B.2
  • 23
    • 70349696077 scopus 로고    scopus 로고
    • Nonnegative Approximations of Nonnegative Tensors
    • L.Lim,, and P.Comon, (2009), “Nonnegative Approximations of Nonnegative Tensors,” Journal of Chemometrics, 23, 432–441.
    • (2009) Journal of Chemometrics , vol.23 , pp. 432-441
    • Lim, L.1    Comon, P.2
  • 25
    • 49549125943 scopus 로고    scopus 로고
    • Sparse Statistical Modelling in Gene Expression Genomics
    • Do K., Müller P., Vannucci M., (eds), Cambridge, UK: Cambridge University Press
    • J.E.Lucas,, C.Carvalho,, Q.Wang,, A.Bild,, J.Nevins,, and M.West, (2006), “Sparse Statistical Modelling in Gene Expression Genomics,” in Bayesian Inference for Gene Expression and Proteomics, eds. K.Do, P.Müller, and M.Vannucci, Cambridge, UK: Cambridge University Press, pp. 155–176.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 155-176
    • Lucas, J.E.1    Carvalho, C.2    Wang, Q.3    Bild, A.4    Nevins, J.5    West, M.6
  • 26
    • 69949150574 scopus 로고    scopus 로고
    • A Conjugate Prior for Discrete Hierarchical Log-Linear Models
    • H.Massam,, J.Liu,, and A.Dobra, (2009), “A Conjugate Prior for Discrete Hierarchical Log-Linear Models,” The Annals of Statistics, 37, 3431–3467.
    • (2009) The Annals of Statistics , vol.37 , pp. 3431-3467
    • Massam, H.1    Liu, J.2    Dobra, A.3
  • 28
    • 84902465916 scopus 로고    scopus 로고
    • Posterior Contraction in Sparse Bayesian Factor Models for Massive Covariance Matrices
    • D.Pati,, A.Bhattacharya,, N.S.Pillai,, and D.B.Dunson, (2014), “Posterior Contraction in Sparse Bayesian Factor Models for Massive Covariance Matrices,” The Annals of Statistics, 42, 1102–1130.
    • (2014) The Annals of Statistics , vol.42 , pp. 1102-1130
    • Pati, D.1    Bhattacharya, A.2    Pillai, N.S.3    Dunson, D.B.4
  • 29
    • 84873946268 scopus 로고    scopus 로고
    • Posterior Consistency in Conditional Distribution Estimation
    • D.Pati,, D.B.Dunson,, and S.T.Tokdar, (2013), “Posterior Consistency in Conditional Distribution Estimation,” Journal of Multivariate Analysis, 116, 456–472.
    • (2013) Journal of Multivariate Analysis , vol.116 , pp. 456-472
    • Pati, D.1    Dunson, D.B.2    Tokdar, S.T.3
  • 30
    • 79957438558 scopus 로고    scopus 로고
    • Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction
    • Bernardo J.M., Bayarri M.J., Berger J.O., Dawid A.P., Heckerman D., Smith A.F.M., West M., (eds), New York: Oxford University Press
    • N.Polson,, and J.Scott, (2010), “Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction,” in Bayesian Statistics 9, eds. J.M.Bernardo, M.J.Bayarri, J.O.Berger, A.P.Dawid, D.Heckerman, A.F.M.Smith, and M.West, New York: Oxford University Press, pp. 501–538.
    • (2010) Bayesian Statistics 9 , pp. 501-538
    • Polson, N.1    Scott, J.2
  • 31
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and Empirical-Bayes Multiplicity Adjustment in the Variable-Selection Problem
    • J.Scott,, and J.Berger, (2010), “Bayes and Empirical-Bayes Multiplicity Adjustment in the Variable-Selection Problem,” The Annals of Statistics, 38, 2587–2619.
    • (2010) The Annals of Statistics , vol.38 , pp. 2587-2619
    • Scott, J.1    Berger, J.2
  • 32
    • 0000720609 scopus 로고
    • A Constructive Definition of Dirichlet Priors
    • J.Sethuraman, (1994), “A Constructive Definition of Dirichlet Priors,” Statistica Sinica, 4, 639–650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 33
    • 84882571393 scopus 로고    scopus 로고
    • Adaptive Bayesian Multivariate Density Estimation With Dirichlet Mixtures
    • W.Shen,, S.T.Tokdar,, and S.Ghosal, (2013), “Adaptive Bayesian Multivariate Density Estimation With Dirichlet Mixtures,” Biometrika, 100, 623–640.
    • (2013) Biometrika , vol.100 , pp. 623-640
    • Shen, W.1    Tokdar, S.T.2    Ghosal, S.3
  • 34
    • 0030522124 scopus 로고    scopus 로고
    • A New Look at Independence
    • M.Talagrand, (1996), “A New Look at Independence,” The Annals of Probability, 24, 1–34.
    • (1996) The Annals of Probability , vol.24 , pp. 1-34
    • Talagrand, M.1
  • 36
    • 51049088387 scopus 로고    scopus 로고
    • Rates of Contraction of Posterior Distributions Based on Gaussian Process Priors
    • A.van der Vaart,, and J.van Zanten, (2008), “Rates of Contraction of Posterior Distributions Based on Gaussian Process Priors,” The Annals of Statistics, 36, 1435–1463.
    • (2008) The Annals of Statistics , vol.36 , pp. 1435-1463
    • van der Vaart, A.1    van Zanten, J.2
  • 38
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian Factor Regression Models in the ‘Large p, Small n’ Paradigm
    • Bernardo J.M., Bayarri M.J., Berger J.O., Dawid A.P., Heckerman D., Smith A.F.M., West M., (eds), New York: Oxford University Press
    • M.West, (2003), “Bayesian Factor Regression Models in the ‘Large p, Small n’ Paradigm,” in Bayesian Statistics 7, eds. J.M.Bernardo, M.J.Bayarri, J.O.Berger, A.P.Dawid, D.Heckerman, A.F.M.Smith. and M.West, New York: Oxford University Press, pp. 733–742.
    • (2003) Bayesian Statistics 7 , pp. 733-742
    • West, M.1
  • 39
    • 85006648158 scopus 로고    scopus 로고
    • Bayesian Conditional Tensor Factorizations for High-dimensional Classification
    • Y.Yang,, and D.B.Dunson, (2013), “Bayesian Conditional Tensor Factorizations for High-dimensional Classification,” arXiv preprint arXiv:1301.4950.
    • (2013) arXiv preprint arXiv:1301.4950
    • Yang, Y.1    Dunson, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.