메뉴 건너뛰기




Volumn 8, Issue 1, 2014, Pages 328-354

Estimation and variable selection with exponential weights

Author keywords

Estimation; Exponential weights; Gibbs sampler; Identifiability con dition; Model selection; Sparse linear model; Variable selection

Indexed keywords


EID: 84902471524     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-EJS883     Document Type: Article
Times cited : (27)

References (49)
  • 1
    • 84857076122 scopus 로고    scopus 로고
    • Map model selection in gaussian regression
    • MR2721039
    • Abramovich, F. and V. Grinshtein (2010). Map model selection in gaussian regression. Electron. J. Stat. 4, 932-949. MR2721039.
    • (2010) Electron. J. Stat , vol.4 , pp. 932-949
    • Abramovich, F.1    Grinshtein, V.2
  • 2
    • 79960999147 scopus 로고    scopus 로고
    • Pac-bayesian theorems for sparse regression estimation with exponential weights
    • Arxiv: 1009. 2707., MR2786484
    • Alquier, P. and K. Lounici (2011). Pac-bayesian theorems for sparse regression estimation with exponential weights. Electronic Journal of Statis-tics 5, 127-145. Arxiv: 1009. 2707. MR2786484.
    • (2011) Electronic Journal of Statis-tics , vol.5 , pp. 127-145
    • Alquier, P.1    Lounici, K.2
  • 3
    • 56449120785 scopus 로고    scopus 로고
    • Bolasso: Model consistent lasso estimation through the bootstrap
    • ICML '08, New York, NY, USA, In, ACM
    • Bach, F. R. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In Proceedings of the 25th international conference on Machine learning, ICML '08, New York, NY, USA, pp. 33-40. ACM.
    • (2008) Proceedings of the 25th international conference on Machine learning , pp. 33-40
    • Bach, F.R.1
  • 4
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • MR2533469
    • Bickel, P., Y. Ritov, and A. Tsybakov (2009). Simultaneous analysis of lasso and dantzig selector. Annals of Statistics 37(4), 1705-1732. MR2533469.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 5
    • 0003281721 scopus 로고    scopus 로고
    • Gaussian model selection
    • MR1848946
    • Birgé, L. and P. Massart (2001). Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3(3), 203-268. MR1848946.
    • (2001) J. Eur. Math. Soc. (JEMS) , vol.3 , Issue.3 , pp. 203-268
    • Birgé, L.1    Massart, P.2
  • 6
    • 77955148645 scopus 로고    scopus 로고
    • Consistent selection via the Lasso for high dimensional approximating regression models
    • In, Ghosh, Volume 3 of Inst. Math. Stat. Collect.,. Beachwood, OH: Inst. Math. Statist. MR2459221
    • Bunea, F. (2008). Consistent selection via the Lasso for high dimensional approximating regression models. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, Volume 3 of Inst. Math. Stat. Collect., pp. 122-137. Beachwood, OH: Inst. Math. Statist. MR2459221.
    • (2008) Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K , pp. 122-137
    • Bunea, F.1
  • 7
    • 41949142938 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • MR2450298
    • Bunea, F. and A. Nobel (2008). Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. The-ory 54(4), 1725-1735. MR2450298.
    • (2008) IEEE Trans. Inform. The-ory , vol.54 , Issue.4 , pp. 1725-1735
    • Bunea, F.1    Nobel, A.2
  • 9
    • 79959566409 scopus 로고    scopus 로고
    • Orthogonal matching pursuit for sparse signal recovery with noise
    • MR2840484
    • Cai, T. T. and L. Wang (2011). Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inform. Theory 57(7), 4680-4688. MR2840484.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , Issue.7 , pp. 4680-4688
    • Cai, T.T.1    Wang, L.2
  • 10
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • Candès, E. and T. Tao (2007). The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist. 35(6), 2313-2351. MR2382644.
    • (2007) Ann. Statist , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 11
    • 84872329247 scopus 로고    scopus 로고
    • How well can we estimate a sparse vector?
    • MR3008569
    • Candès, E. J. and M. A. Davenport (2013). How well can we estimate a sparse vector? Appl. Comput. Harmon. Anal. 34(2), 317-323. MR3008569.
    • (2013) Appl. Comput. Harmon. Anal , vol.34 , Issue.2 , pp. 317-323
    • Candès, E.J.1    Davenport, M.A.2
  • 12
    • 69049120308 scopus 로고    scopus 로고
    • Near-ideal model selection by ℓ1 minimization
    • MR2543688
    • Candès, E. J. and Y. Plan (2009). Near-ideal model selection by ℓ1 minimization. Ann. Statist. 37(5A), 2145-2177. MR2543688.
    • (2009) Ann. Statist , vol.37 , Issue.5 A , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 14
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criteria for model selection with large model spaces
    • MR2443189
    • Chen, J. and Z. Chen (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika 95(3), 759-771. MR2443189.
    • (2008) Biometrika , vol.95 , Issue.3 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 15
    • 0042306266 scopus 로고    scopus 로고
    • The practical implementation of Bayesian model selection
    • In, Ser.,. Beachwood, OH: Inst. Math. Statist. With discussion by M. Clyde, Dean P. Foster, and Robert A. Stine, and a rejoinder by the authors. MR2000752
    • Chipman, H., E. I. George, and R. E. McCulloch (2001). The practical implementation of Bayesian model selection. In Model selection, Volume 38 of IMS Lecture Notes Monogr. Ser., pp. 65-134. Beachwood, OH: Inst. Math. Statist. With discussion by M. Clyde, Dean P. Foster, and Robert A. Stine, and a rejoinder by the authors. MR2000752.
    • (2001) Model selection, Volume 38 of IMS Lecture Notes Monogr , pp. 65-134
    • Chipman, H.1    George, E.I.2    McCulloch, R.E.3
  • 16
    • 84902512561 scopus 로고    scopus 로고
    • In Proceedings of the 24th annual conference on Computational Learning Theory, Budapest (Hungary)
    • Dalalyan, A. and J. Salmon (2011). Optimal aggregation of affine estimators. In Proceedings of the 24th annual conference on Computational Learning Theory, Budapest (Hungary).
    • (2011) Optimal aggregation of affine estimators
    • Dalalyan, A.1    Salmon, J.2
  • 17
    • 84884954887 scopus 로고    scopus 로고
    • Sharp oracle inequalities for aggregation of affine estimators
    • MR3059085
    • Dalalyan, A. and J. Salmon (2012). Sharp oracle inequalities for aggregation of affine estimators. Ann. Statist. 40(4), 2327-2355. MR3059085.
    • (2012) Ann. Statist , vol.40 , Issue.4 , pp. 2327-2355
    • Dalalyan, A.1    Salmon, J.2
  • 18
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • In, Sci.,. Berlin: Springer. MR2397581
    • Dalalyan, A. and A. Tsybakov (2007). Aggregation by exponential weighting and sharp oracle inequalities. In Learning theory, Volume 4539 of Lecture Notes in Comput. Sci., pp. 97-111. Berlin: Springer. MR2397581.
    • (2007) Learning theory, Volume 4539 of Lecture Notes in Comput , pp. 97-111
    • Dalalyan, A.1    Tsybakov, A.2
  • 20
    • 79960979995 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with NP-dimensionality
    • MR2849368
    • Fan, J. and J. Lv (2011). Nonconcave penalized likelihood with NP-dimensionality. IEEE Trans. Inform. Theory 57(8), 5467-5484. MR2849368.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , Issue.8 , pp. 5467-5484
    • Fan, J.1    Lv, J.2
  • 21
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • MR2065194
    • Fan, J. and H. Peng (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32(3), 928-961. MR2065194.
    • (2004) Ann. Statist , vol.32 , Issue.3 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 23
    • 58149358999 scopus 로고    scopus 로고
    • Mixing least-squares estimators when the variance is unknown
    • MR2543587
    • Giraud, C. (2008). Mixing least-squares estimators when the variance is unknown. Bernoulli 14(4), 1089-1107. MR2543587.
    • (2008) Bernoulli , vol.14 , Issue.4 , pp. 1089-1107
    • Giraud, C.1
  • 24
    • 84864946789 scopus 로고    scopus 로고
    • UPS delivers optimal phase diagram in highdimensional variable selection
    • MR3013180
    • Ji, P. and J. Jin (2012). UPS delivers optimal phase diagram in highdimensional variable selection. Ann. Statist. 40(1), 73-103. MR3013180.
    • (2012) Ann. Statist , vol.40 , Issue.1 , pp. 73-103
    • Ji, P.1    Jin, J.2
  • 26
    • 54349121305 scopus 로고    scopus 로고
    • Learning by mirror averaging
    • MR2458184
    • Juditsky, A., P. Rigollet, and A. B. Tsybakov (2008). Learning by mirror averaging. Ann. Statist. 36(5), 2183-2206. MR2458184.
    • (2008) Ann. Statist , vol.36 , Issue.5 , pp. 2183-2206
    • Juditsky, A.1    Rigollet, P.2    Tsybakov, A.B.3
  • 27
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing leastsquares regressions
    • MR2242356
    • Leung, G. and A. Barron (2006). Information theory and mixing leastsquares regressions. IEEE Transactions on Information Theory 52(8), 3396-3410. MR2242356.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.8 , pp. 3396-3410
    • Leung, G.1    Barron, A.2
  • 28
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and D-convex aggregation
    • MR2356820
    • Lounici, K. (2007). Generalized mirror averaging and D-convex aggregation. Math. Methods Statist. 16(3), 246-259. MR2356820.
    • (2007) Math. Methods Statist , vol.16 , Issue.3 , pp. 246-259
    • Lounici, K.1
  • 29
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • MR2386087
    • Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statis-tics 2, 90-102. MR2386087.
    • (2008) Electronic Journal of Statis-tics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 31
    • 84855412474 scopus 로고    scopus 로고
    • Oracle inequalities and optimal inference under group sparsity
    • MR2893865
    • Lounici, K., M. Pontil, A. Tsybakov, and S. van de Geer (2011). Oracle inequalities and optimal inference under group sparsity. Ann. Statist. 39(4), 2164-2204. MR2893865.
    • (2011) Ann. Statist , vol.39 , Issue.4 , pp. 2164-2204
    • Lounici, K.1    Pontil, M.2    Tsybakov, A.3    van de Geer, S.4
  • 32
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • MR2278363
    • Meinshausen, N., P. Bühlmann, and E. Zürich (2006). High dimensional graphs and variable selection with the lasso. Annals of Statistics 34, 1436-1462. MR2278363.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2    Zürich, E.3
  • 33
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • MR2488351
    • Meinshausen, N. and B. Yu (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. 37(1), 246-270. MR2488351.
    • (2009) Ann. Statist , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 34
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over ℓq-balls
    • MR2882274
    • Raskutti, G., M. J. Wainwright, and B. Yu (2011). Minimax rates of estimation for high-dimensional linear regression over ℓq-balls. IEEE Trans. Inform. Theory 57(10), 6976-6994. MR2882274.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , Issue.10 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 35
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • MR2816337
    • Rigollet, P. and A. Tsybakov (2011). Exponential screening and optimal rates of sparse estimation. Ann. Statist. 39(2), 731-771. MR2816337.
    • (2011) Ann. Statist , vol.39 , Issue.2 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.2
  • 36
    • 84871564349 scopus 로고    scopus 로고
    • Sparse estimation by exponential weighting
    • MR3025134
    • Rigollet, P. and A. B. Tsybakov (2012). Sparse estimation by exponential weighting. Statist. Sci. 27(4), 558-575. MR3025134.
    • (2012) Statist. Sci , vol.27 , Issue.4 , pp. 558-575
    • Rigollet, P.1    Tsybakov, A.B.2
  • 37
    • 84877881209 scopus 로고    scopus 로고
    • Reconstruction from anisotropic random measurements
    • MR3061256
    • Rudelson, M. and S. Zhou (2013). Reconstruction from anisotropic random measurements. IEEE Trans. Inform. Theory 59(6), 3434-3447. MR3061256.
    • (2013) IEEE Trans. Inform. Theory , vol.59 , Issue.6 , pp. 3434-3447
    • Rudelson, M.1    Zhou, S.2
  • 38
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • With comments and a rejoinder by the author., MR1466682
    • Shao, J. (1997). An asymptotic theory for linear model selection. Statist. Sinica 7(2), 221-264. With comments and a rejoinder by the author. MR1466682.
    • (1997) Statist. Sinica , vol.7 , Issue.2 , pp. 221-264
    • Shao, J.1
  • 39
    • 0004245243 scopus 로고
    • Computer Science and Scientific Computing. Boston, MA: Academic Press Inc. MR1061154
    • Stewart, G. W. and J. G. Sun (1990). Matrix perturbation theory. Computer Science and Scientific Computing. Boston, MA: Academic Press Inc. MR1061154.
    • (1990) Matrix perturbation theory
    • Stewart, G.W.1    Sun, J.G.2
  • 41
    • 84857090762 scopus 로고    scopus 로고
    • Minimax risks for sparse regressions: Ultra-high dimensional phenomenons
    • MR2879672
    • Verzelen, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6, 38-90. MR2879672.
    • (2012) Electron. J. Stat , vol.6 , pp. 38-90
    • Verzelen, N.1
  • 42
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso)
    • MR2729873
    • Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55(5), 2183-2202. MR2729873.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 43
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • MR2044592
    • Yang, Y. (2004). Aggregating regression procedures to improve performance. Bernoulli 10(8), 25-47. MR2044592.
    • (2004) Bernoulli , vol.10 , Issue.8 , pp. 25-47
    • Yang, Y.1
  • 44
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
    • MR2234196
    • Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 92(4), 937-950. MR2234196.
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 937-950
    • Yang, Y.1
  • 45
    • 79551503968 scopus 로고    scopus 로고
    • Rate minimaxity of the Lasso and Dantzig selector for the ℓq loss in ℓr balls
    • MR2756192
    • Ye, F. and C.-H. Zhang (2010). Rate minimaxity of the Lasso and Dantzig selector for the ℓq loss in ℓr balls. J. Mach. Learn. Res. 11, 3519-3540. MR2756192.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3519-3540
    • Ye, F.1    Zhang, C.-H.2
  • 47
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • MR2604701
    • Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38(2), 894-942. MR2604701.
    • (2010) Ann. Statist , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.-H.1
  • 48
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high-dimensional sparse estimation problems
    • MR3025135
    • Zhang, C.-H. and T. Zhang (2012). A general theory of concave regularization for high-dimensional sparse estimation problems. Statist. Sci. 27(4), 576-593. MR3025135.
    • (2012) Statist. Sci , vol.27 , Issue.4 , pp. 576-593
    • Zhang, C.-H.1    Zhang, T.2
  • 49
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • Zhao, P. and B. Yu (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541-2563. MR2274449.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.