메뉴 건너뛰기




Volumn 40, Issue 4, 2012, Pages 2069-2101

Needles and straw in a haystack: Posterior concentration for possibly sparse sequences

Author keywords

Asymptotics; Bayesian estimators; Contraction; Gaussian sequence model; Mixture priors; Sparsity

Indexed keywords


EID: 84871997969     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1029     Document Type: Article
Times cited : (221)

References (22)
  • 1
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • MR2281879
    • ABRAMOVICH, F.,BENJAMINI, Y.,DONOHO, D. L. and JOHNSTONE, I. M. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34 584-653. MR2281879
    • (2006) Ann Statist. , vol.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 2
    • 50449094780 scopus 로고    scopus 로고
    • On optimality of Bayesian testimation in the normal means problem
    • MR2363971
    • ABRAMOVICH, F., GRINSHTEIN, V. and PENSKY, M. (2007). On optimality of Bayesian testimation in the normal means problem. Ann. Statist. 35 2261-2286. MR2363971
    • (2007) Ann Statist. , vol.35 , pp. 2261-2286
    • Abramovich, F.1    Grinshtein, V.2    Pensky, M.3
  • 3
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 4
    • 0003281721 scopus 로고    scopus 로고
    • Gaussian model selection
    • MR1848946
    • BIRGÉ, L. and MASSART, P. (2001). Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 203-268. MR1848946
    • (2001) J. Eur. Math Soc. (JEMS) , vol.3 , pp. 203-268
    • Birgé, L.1    Massart, P.2
  • 5
    • 68649112839 scopus 로고    scopus 로고
    • Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means
    • MR2533468
    • BROWN, L. D. andGREENSHTEIN, E. (2009). Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means. Ann. Statist. 37 1685-1704. MR2533468
    • (2009) Ann Statist. , vol.37 , pp. 1685-1704
    • Brown, L.D.1    Greenshtein, E.2
  • 6
    • 42149119609 scopus 로고    scopus 로고
    • Estimation and confidence sets for sparse normal mixtures
    • MR2382653
    • CAI, T. T., JIN, J. and LOW, M. G. (2007). Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 2421-2449. MR2382653
    • (2007) Ann Statist. , vol.35 , pp. 2421-2449
    • Cai, T.T.1    Jin, J.2    Low, M.G.3
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 8
    • 78650708410 scopus 로고    scopus 로고
    • Lower bounds for posterior rates with Gaussian process priors
    • MR2471287
    • CASTILLO, I. (2008). Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2 1281-1299. MR2471287
    • (2008) Electron. J Stat. , vol.2 , pp. 1281-1299
    • Castillo, I.1
  • 11
    • 0002712203 scopus 로고
    • Maximum entropy and the nearly black object
    • With discussion and a reply by the authors. MR1157714
    • DONOHO, D. L., JOHNSTONE, I. M., HOCH, J. C. and STERN, A. S. (1992). Maximum entropy and the nearly black object. J. R. Stat. Soc. Ser. B Stat. Methodol. 54 41-81.With discussion and a reply by the authors. MR1157714
    • (1992) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.54 , pp. 41-81
    • Donoho, D.L.1    Johnstone, I.M.2    Hoch, J.C.3    Stern, A.S.4
  • 12
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • MR1813972
    • GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87 731-747. MR1813972
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 13
    • 0036032635 scopus 로고    scopus 로고
    • Reconstruction of sparse vectors in white Gaussian noise
    • MR2101314
    • GOLUBEV, G. K. (2002). Reconstruction of sparse vectors in white Gaussian noise. Problemy Peredachi Informatsii 38 75-91. MR2101314
    • (2002) Problemy Peredachi Informatsii , vol.38 , pp. 75-91
    • Golubev, G.K.1
  • 14
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • MR2469326
    • HUANG, J., MA, S. and ZHANG, C.-H. (2008). Adaptive Lasso for sparse high-dimensional regression models. Statist. Sinica 18 1603-1618. MR2469326
    • (2008) Statist Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 15
    • 68649100959 scopus 로고    scopus 로고
    • General maximum likelihood empirical Bayes estimation of normal means
    • MR2533467
    • JIANG, W. and ZHANG, C.-H. (2009). General maximum likelihood empirical Bayes estimation of normal means. Ann. Statist. 37 1647-1684. MR2533467
    • (2009) Ann Statist. , vol.37 , pp. 1647-1684
    • Jiang, W.1    Zhang, C.-H.2
  • 16
    • 3543030265 scopus 로고    scopus 로고
    • Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences
    • MR2089135
    • JOHNSTONE, I.M. and SILVERMAN, B. W. (2004). Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Statist. 32 1594-1649. MR2089135
    • (2004) Ann Statist. , vol.32 , pp. 1594-1649
    • Johnstone, I.M.1    Silverman, B.W.2
  • 17
    • 18444410406 scopus 로고    scopus 로고
    • Empirical Bayes selection of wavelet thresholds
    • MR2166560
    • JOHNSTONE, I. M. and SILVERMAN, B. W. (2005). Empirical Bayes selection of wavelet thresholds. Ann. Statist. 33 1700-1752. MR2166560
    • (2005) Ann Statist. , vol.33 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 18
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
    • MR2722450
    • SCOTT, J. G. and BERGER, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist. 38 2587-2619. MR2722450
    • (2010) Ann Statist. , vol.38 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 19
    • 29144459062 scopus 로고    scopus 로고
    • Efficient empirical Bayes variable selection and estimation in linear models
    • MR2236436
    • YUAN, M. and LIN, Y. (2005). Efficient empirical Bayes variable selection and estimation in linear models. J. Amer. Statist. Assoc. 100 1215-1225. MR2236436
    • (2005) J. Amer. Statist Assoc. , vol.100 , pp. 1215-1225
    • Yuan, M.1    Lin, Y.2
  • 20
    • 18444396908 scopus 로고    scopus 로고
    • General empirical Bayes wavelet methods and exactly adaptive minimax estimation
    • MR2157796
    • ZHANG, C.-H. (2005). General empirical Bayes wavelet methods and exactly adaptive minimax estimation. Ann. Statist. 33 54-100. MR2157796
    • (2005) Ann Statist. , vol.33 , pp. 54-100
    • Zhang, C.-H.1
  • 21
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in highdimensional linear regression
    • MR2435448
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the LASSO selection in highdimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
    • (2008) Ann Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 22
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.