-
2
-
-
82655164891
-
A Bernstein-von Mises theorem for discrete probability distributions
-
MR2471588
-
BOUCHERON, S. and GASSIAT, E. (2009). A Bernstein-von Mises theorem for discrete probability distributions. Electron. J. Stat. 3 114-148. MR2471588
-
(2009)
Electron. J. Stat.
, vol.3
, pp. 114-148
-
-
Boucheron, S.1
Gassiat, E.2
-
3
-
-
82655164894
-
A semi-parametric Bernstein-von Mises theorem
-
DOI:10.1007/s00440-010-0316-5
-
CASTILLO, I. (2010). A semi-parametric Bernstein-von Mises theorem. Probab. Theory Related Fields. DOI:10.1007/s00440-010-0316-5.
-
(2010)
Probab. Theory Related Fields
-
-
Castillo, I.1
-
4
-
-
0025430804
-
Information-theoretic asymptotics of Bayes methods
-
MR1053841
-
CLARKE, B. S. and BARRON, A. R. (1990). Information-theoretic asymptotics of Bayes methods. IEEE Trans. Inform. Theory 36 453-471. MR1053841
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 453-471
-
-
Clarke, B.S.1
Barron, A.R.2
-
5
-
-
84978678945
-
Reference priors for exponential families with increasing dimension
-
MR2678969
-
CLARKE, B. and GHOSAL, S. (2010). Reference priors for exponential families with increasing dimension. Electron. J. Stat. 4 737-780. MR2678969
-
(2010)
Electron. J. Stat.
, vol.4
, pp. 737-780
-
-
Clarke, B.1
Ghosal, S.2
-
6
-
-
0003363041
-
A practical guide to splines
-
Springer, New York. MR0507062
-
DE BOOR, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences 27. Springer, New York. MR0507062
-
(1978)
Applied Mathematical Sciences
, vol.27
-
-
De Boor, C.1
-
7
-
-
0033236897
-
Wald lecture: On the Bernstein-von Mises theorem with infinitedimensional parameters
-
FREEDMAN, D. (1999). Wald lecture: On the Bernstein-von Mises theorem with infinitedimensional parameters. Ann. Statist. 27 1119-1140.
-
(1999)
Ann. Statist.
, vol.27
, pp. 1119-1140
-
-
Freedman, D.1
-
8
-
-
0012224228
-
Asymptotic normality of posterior distributions in high-dimensional linear models
-
MR1681701
-
GHOSAL, S. (1999). Asymptotic normality of posterior distributions in high-dimensional linear models. Bernoulli 5 315-331. MR1681701
-
(1999)
Bernoulli
, vol.5
, pp. 315-331
-
-
Ghosal, S.1
-
9
-
-
0347117630
-
Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity
-
MR1790613
-
GHOSAL, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. J. Multivariate Anal. 74 49-68. MR1790613
-
(2000)
J. Multivariate Anal.
, vol.74
, pp. 49-68
-
-
Ghosal, S.1
-
10
-
-
0034164796
-
Convergence rates of posterior distributions
-
MR1790007
-
GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. MR1790007
-
(2000)
Ann. Statist.
, vol.28
, pp. 500-531
-
-
Ghosal, S.1
Ghosh, J.K.2
Van Der Vaart, A.W.3
-
11
-
-
49449093584
-
Convergence rates of posterior distributions for noni. i.d. observations
-
MR2332274
-
GHOSAL, S. and VAN DER VAART, A. (2007). Convergence rates of posterior distributions for noni. i.d. observations. Ann. Statist. 35 192-223. MR2332274
-
(2007)
Ann. Statist.
, vol.35
, pp. 192-223
-
-
Ghosal, S.1
Van Der Vaart, A.2
-
12
-
-
33845333028
-
The bernstein-von Mises theorem for the proportional hazard model
-
DOI 10.1214/009053606000000533
-
KIM, Y. (2006). The Bernstein-von Mises theorem for the proportional hazard model. Ann. Statist. 34 1678-1700. MR2283713 (Pubitemid 44875077)
-
(2006)
Annals of Statistics
, vol.34
, Issue.4
, pp. 1678-1700
-
-
Kim, Y.1
-
13
-
-
24344452101
-
A Bernstein-von Mises theorem in the nonparametric right-censoring model
-
DOI 10.1214/009053604000000526
-
KIM, Y. and LEE, J. (2004). A Bernstein-von Mises theorem in the nonparametric right-censoring model. Ann. Statist. 32 1492-1512. MR2089131 (Pubitemid 41250274)
-
(2004)
Annals of Statistics
, vol.32
, Issue.4
, pp. 1492-1512
-
-
Kim, Y.1
Lee, J.2
-
14
-
-
34247553430
-
Concentration inequalities and model selection
-
Springer, Berlin. MR2319879
-
MASSART, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes in Math. 1896. Springer, Berlin. MR2319879
-
(2007)
Lecture Notes in Math.
, vol.1896
-
-
Massart, P.1
-
16
-
-
0036489060
-
Asymptotic normality of semiparametric and nonparametric posterior distributions
-
MR1947282
-
SHEN, X. (2002). Asymptotic normality of semiparametric and nonparametric posterior distributions. J. Amer. Statist. Assoc. 97 222-235. MR1947282
-
(2002)
J. Amer. Statist. Assoc.
, vol.97
, pp. 222-235
-
-
Shen, X.1
-
17
-
-
0035539848
-
Rates of convergence of posterior distributions
-
MR1865337
-
SHEN, X. and WASSERMAN, L. (2001). Rates of convergence of posterior distributions. Ann. Statist. 29 687-714. MR1865337
-
(2001)
Ann. Statist.
, vol.29
, pp. 687-714
-
-
Shen, X.1
Wasserman, L.2
|