-
1
-
-
33846041971
-
Consistent estimation of the number of dynamic factors in a large N and T panel
-
AMENGUAL, D. & WATSON, M. (2007). Consistent estimation of the number of dynamic factors in a large N and T panel. J. Bus. Econ. Statist. 25, 91-6.
-
(2007)
J. Bus. Econ. Statist.
, vol.25
, pp. 91-96
-
-
Amengual, D.1
Watson, M.2
-
2
-
-
67349234862
-
Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood
-
ANDO, T. (2009). Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood. J. Mult. Anal. 100, 1717-26.
-
(2009)
J. Mult. Anal.
, vol.100
, pp. 1717-1726
-
-
Ando, T.1
-
3
-
-
0032329779
-
A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
-
ARMINGER, G. & MUTHÉN, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 63, 271-300.
-
(1998)
Psychometrika
, vol.63
, pp. 271-300
-
-
Arminger, G.1
Muthén, B.2
-
4
-
-
0036221554
-
Determining the number of factors in approximate factor models
-
BAI, J. & NG, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-222.
-
(2002)
Econometrica
, vol.70
, pp. 191-222
-
-
Bai, J.1
Ng, S.2
-
5
-
-
41549106844
-
Regularized estimation of large covariance matrices
-
BICKEL, P. & LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36, 199-227.
-
(2008)
Ann. Statist.
, vol.36
, pp. 199-227
-
-
Bickel, P.1
Levina, E.2
-
6
-
-
62549125109
-
High-dimensional sparse factor modeling: Applications in gene expression genomics
-
CARVALHO, C., CHANG, J., LUCAS, J., NEVINS, J., WANG, Q. & WEST, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Statist. Assoc. 103, 1438-56.
-
(2008)
J. Am. Statist. Assoc.
, vol.103
, pp. 1438-1456
-
-
Carvalho, C.1
Chang, J.2
Lucas, J.3
Nevins, J.4
Wang, Q.5
West, M.6
-
7
-
-
0030376179
-
Stochastic versions of the EM algorithm: An experimental study in the mixture case
-
CELEUX, G., CHAUVEAU, D. & DIEBOLT, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. J. Statist. Comp. and Simul. 55, 287-314.
-
(1996)
J. Statist. Comp. and Simul.
, vol.55
, pp. 287-314
-
-
Celeux, G.1
Chauveau, D.2
Diebolt, J.3
-
8
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models
-
GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515-34.
-
(2006)
Bayesian Anal.
, vol.1
, pp. 515-534
-
-
Gelman, A.1
-
9
-
-
0030539706
-
Measuring the pricing error of the arbitrage pricing theory
-
GEWEKE, J. & ZHOU, G. (1996). Measuring the price of the Arbitrage Pricing Theory. Rev. Finan. Studies 9, 557-87. (Pubitemid 126408073)
-
(1996)
Review of Financial Studies
, vol.9
, Issue.2
, pp. 557-587
-
-
Geweke, J.1
Zhou, G.2
-
10
-
-
72649086818
-
Default prior distributions and efficient posterior computation in Bayesian factor analysis
-
GHOSH, J. & DUNSON, D. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comp. Graph. Statist. 18, 306-20.
-
(2009)
J. Comp. Graph. Statist.
, vol.18
, pp. 306-320
-
-
Ghosh, J.1
Dunson, D.2
-
11
-
-
21444446838
-
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
-
DOI 10.1093/bioinformatics/bti422
-
GUI, J. & LI, H. (2005). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-8. (Pubitemid 40916425)
-
(2005)
Bioinformatics
, vol.21
, Issue.13
, pp. 3001-3008
-
-
Gui, J.1
Li, H.2
-
12
-
-
0024682770
-
Updating the inverse of a matrix
-
HAGER, W. (1989). Updating the inverse of a matrix. SIAM Rev. 31, 221-39.
-
(1989)
SIAM Rev.
, vol.31
, pp. 221-239
-
-
Hager, W.1
-
13
-
-
2242448298
-
Bayesian selection on the number of factors in a factor analysis model
-
LEE, S. & SONG, X. (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika 29, 23-39.
-
(2002)
Behaviormetrika
, vol.29
, pp. 23-39
-
-
Lee, S.1
Song, X.2
-
14
-
-
0442309501
-
Parameter expansion for data augmentation
-
LIU, J. & WU, Y. (1999). Parameter expansion for data augmentation. J. Am. Statist. Assoc. 94, 1264-74.
-
(1999)
J. Am. Statist. Assoc.
, vol.94
, pp. 1264-1274
-
-
Liu, J.1
Wu, Y.2
-
15
-
-
1842539381
-
Bayesian model assessment in factor analysis
-
LOPES, H. & WEST, M. (2004). Bayesian model assessment in factor analysis. Statist. Sinica 14, 41-68.
-
(2004)
Statist. Sinica
, vol.14
, pp. 41-68
-
-
Lopes, H.1
West, M.2
-
16
-
-
49549125943
-
Sparse statistical modelling in gene expression genomics
-
Eds. P. Müller, K. Do, and M. Vannucci. Cambridge: Cambridge University Press
-
LUCAS, J., CARVALHO, C., WANG, Q., BILD, A., NEVINS, J. & WEST, M. (2006). Sparse statistical modelling in gene expression genomics. Bayesian Inference for Gene Expression and Proteomics, Eds. P. Müller, K. Do, and M. Vannucci, 155-76. Cambridge: Cambridge University Press.
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
, pp. 155-176
-
-
Lucas, J.1
Carvalho, C.2
Wang, Q.3
Bild, A.4
Nevins, J.5
West, M.6
-
17
-
-
34347398269
-
Additive risk survival model with microarray data
-
MA, S. & HUANG, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8, 192.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 192
-
-
Ma, S.1
Huang, J.2
-
18
-
-
34548026526
-
Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
-
ROBERTS, G. & ROSENTHAL, J. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. 44, 458-475.
-
(2007)
J. Appl. Prob.
, vol.44
, pp. 458-475
-
-
Roberts, G.1
Rosenthal, J.2
-
19
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
DOI 10.1056/NEJMoa012914
-
ROSENWALD, A.,WRIGHT, G.,CHAN, W. C.,CONNORS, J. M.,CAMPO, E., FISHER, R. I.,GASCOYNE, R. D.,MUELLERHERMELINK, H. K., SMELAND, E. B. et al. (2002). The use of molecular profiling to predict survival after chemotheropy for diffuse large-B-cell lymphoma. New Engl. J. Med. 346, 1937-47. (Pubitemid 34651353)
-
(2002)
New England Journal of Medicine
, vol.346
, Issue.25
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyne, R.D.7
Konrad Muller-Hermelink, H.8
Smeland, E.B.9
Giltnane, J.M.10
Hurt, E.M.11
Zhao, H.12
Averett, L.13
Yang, L.14
Wilson, W.H.15
Jaffe, E.S.16
Simon, R.17
Klausner, R.D.18
Powell, J.19
Duffey, P.L.20
Longo, D.L.21
Greiner, T.C.22
Weisenburger, D.D.23
Sanger, W.G.24
Dave, B.J.25
Lynch, J.C.26
Vose, J.27
Armitage, J.O.28
Montserrat, E.29
Lopez-Guillermo, A.30
Grogan, T.M.31
Miller, T.P.32
Leblanc, M.33
Ott, G.34
Kvaloy, S.35
Delabie, J.36
Holte, H.37
Krajci, P.38
Stokke, T.39
Staudt, L.M.40
more..
-
21
-
-
33645581993
-
Microarray gene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited
-
SEGAL, M. (2006). Microarray gene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-85.
-
(2006)
Biostatistics
, vol.7
, pp. 268-285
-
-
Segal, M.1
-
22
-
-
0035514102
-
Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations
-
SONG, X. & LEE, S. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. Br. J. Math. Statist. Psychol. 54, 237-63.
-
(2001)
Br. J. Math. Statist. Psychol.
, vol.54
, pp. 237-263
-
-
Song, X.1
Lee, S.2
-
23
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
24
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
WEST, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statist. 7, 723-32.
-
(2003)
Bayesian Statist.
, vol.7
, pp. 723-732
-
-
West, M.1
|