메뉴 건너뛰기




Volumn 98, Issue 2, 2011, Pages 291-306

Sparse Bayesian infinite factor models

Author keywords

Adaptive Gibbs sampling; Factor analysis; High dimensional data; Multiplicative gamma process; Parameter expansion; Regularization; Shrinkage

Indexed keywords


EID: 79957827711     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asr013     Document Type: Article
Times cited : (379)

References (25)
  • 1
    • 33846041971 scopus 로고    scopus 로고
    • Consistent estimation of the number of dynamic factors in a large N and T panel
    • AMENGUAL, D. & WATSON, M. (2007). Consistent estimation of the number of dynamic factors in a large N and T panel. J. Bus. Econ. Statist. 25, 91-6.
    • (2007) J. Bus. Econ. Statist. , vol.25 , pp. 91-96
    • Amengual, D.1    Watson, M.2
  • 2
    • 67349234862 scopus 로고    scopus 로고
    • Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood
    • ANDO, T. (2009). Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood. J. Mult. Anal. 100, 1717-26.
    • (2009) J. Mult. Anal. , vol.100 , pp. 1717-1726
    • Ando, T.1
  • 3
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • ARMINGER, G. & MUTHÉN, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 63, 271-300.
    • (1998) Psychometrika , vol.63 , pp. 271-300
    • Arminger, G.1    Muthén, B.2
  • 4
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • BAI, J. & NG, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-222.
    • (2002) Econometrica , vol.70 , pp. 191-222
    • Bai, J.1    Ng, S.2
  • 5
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • BICKEL, P. & LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36, 199-227.
    • (2008) Ann. Statist. , vol.36 , pp. 199-227
    • Bickel, P.1    Levina, E.2
  • 6
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modeling: Applications in gene expression genomics
    • CARVALHO, C., CHANG, J., LUCAS, J., NEVINS, J., WANG, Q. & WEST, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Statist. Assoc. 103, 1438-56.
    • (2008) J. Am. Statist. Assoc. , vol.103 , pp. 1438-1456
    • Carvalho, C.1    Chang, J.2    Lucas, J.3    Nevins, J.4    Wang, Q.5    West, M.6
  • 7
    • 0030376179 scopus 로고    scopus 로고
    • Stochastic versions of the EM algorithm: An experimental study in the mixture case
    • CELEUX, G., CHAUVEAU, D. & DIEBOLT, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. J. Statist. Comp. and Simul. 55, 287-314.
    • (1996) J. Statist. Comp. and Simul. , vol.55 , pp. 287-314
    • Celeux, G.1    Chauveau, D.2    Diebolt, J.3
  • 8
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515-34.
    • (2006) Bayesian Anal. , vol.1 , pp. 515-534
    • Gelman, A.1
  • 9
    • 0030539706 scopus 로고    scopus 로고
    • Measuring the pricing error of the arbitrage pricing theory
    • GEWEKE, J. & ZHOU, G. (1996). Measuring the price of the Arbitrage Pricing Theory. Rev. Finan. Studies 9, 557-87. (Pubitemid 126408073)
    • (1996) Review of Financial Studies , vol.9 , Issue.2 , pp. 557-587
    • Geweke, J.1    Zhou, G.2
  • 10
    • 72649086818 scopus 로고    scopus 로고
    • Default prior distributions and efficient posterior computation in Bayesian factor analysis
    • GHOSH, J. & DUNSON, D. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comp. Graph. Statist. 18, 306-20.
    • (2009) J. Comp. Graph. Statist. , vol.18 , pp. 306-320
    • Ghosh, J.1    Dunson, D.2
  • 11
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • DOI 10.1093/bioinformatics/bti422
    • GUI, J. & LI, H. (2005). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-8. (Pubitemid 40916425)
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 12
    • 0024682770 scopus 로고
    • Updating the inverse of a matrix
    • HAGER, W. (1989). Updating the inverse of a matrix. SIAM Rev. 31, 221-39.
    • (1989) SIAM Rev. , vol.31 , pp. 221-239
    • Hager, W.1
  • 13
    • 2242448298 scopus 로고    scopus 로고
    • Bayesian selection on the number of factors in a factor analysis model
    • LEE, S. & SONG, X. (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika 29, 23-39.
    • (2002) Behaviormetrika , vol.29 , pp. 23-39
    • Lee, S.1    Song, X.2
  • 14
    • 0442309501 scopus 로고    scopus 로고
    • Parameter expansion for data augmentation
    • LIU, J. & WU, Y. (1999). Parameter expansion for data augmentation. J. Am. Statist. Assoc. 94, 1264-74.
    • (1999) J. Am. Statist. Assoc. , vol.94 , pp. 1264-1274
    • Liu, J.1    Wu, Y.2
  • 15
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • LOPES, H. & WEST, M. (2004). Bayesian model assessment in factor analysis. Statist. Sinica 14, 41-68.
    • (2004) Statist. Sinica , vol.14 , pp. 41-68
    • Lopes, H.1    West, M.2
  • 16
    • 49549125943 scopus 로고    scopus 로고
    • Sparse statistical modelling in gene expression genomics
    • Eds. P. Müller, K. Do, and M. Vannucci. Cambridge: Cambridge University Press
    • LUCAS, J., CARVALHO, C., WANG, Q., BILD, A., NEVINS, J. & WEST, M. (2006). Sparse statistical modelling in gene expression genomics. Bayesian Inference for Gene Expression and Proteomics, Eds. P. Müller, K. Do, and M. Vannucci, 155-76. Cambridge: Cambridge University Press.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 155-176
    • Lucas, J.1    Carvalho, C.2    Wang, Q.3    Bild, A.4    Nevins, J.5    West, M.6
  • 17
    • 34347398269 scopus 로고    scopus 로고
    • Additive risk survival model with microarray data
    • MA, S. & HUANG, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8, 192.
    • (2007) BMC Bioinformatics , vol.8 , pp. 192
    • Ma, S.1    Huang, J.2
  • 18
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • ROBERTS, G. & ROSENTHAL, J. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. 44, 458-475.
    • (2007) J. Appl. Prob. , vol.44 , pp. 458-475
    • Roberts, G.1    Rosenthal, J.2
  • 21
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited
    • SEGAL, M. (2006). Microarray gene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-85.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.1
  • 22
    • 0035514102 scopus 로고    scopus 로고
    • Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations
    • SONG, X. & LEE, S. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. Br. J. Math. Statist. Psychol. 54, 237-63.
    • (2001) Br. J. Math. Statist. Psychol. , vol.54 , pp. 237-263
    • Song, X.1    Lee, S.2
  • 23
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 24
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • WEST, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statist. 7, 723-32.
    • (2003) Bayesian Statist. , vol.7 , pp. 723-732
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.