메뉴 건너뛰기




Volumn 17, Issue 2, 2016, Pages

Methods for the integration of multi-omics data: Mathematical aspects

Author keywords

Data integration; Multi omics; Omics

Indexed keywords

LARGE DATASET;

EID: 84954446439     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0857-9     Document Type: Article
Times cited : (312)

References (53)
  • 1
    • 84876576325 scopus 로고    scopus 로고
    • Computational solutions for omics data
    • Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013; 14(5):333-46. doi: 10.1038/nrg3433.
    • (2013) Nat Rev Genet , vol.14 , Issue.5 , pp. 333-346
    • Berger, B.1    Peng, J.2    Singh, M.3
  • 3
    • 70350694448 scopus 로고    scopus 로고
    • Integromics: an r package to unravel relationships between two omics datasets
    • Lê Cao K-A, González I, Déjean S. Integromics: an r package to unravel relationships between two omics datasets. Bioinformatics. 2009; 25(21):2855-6.
    • (2009) Bioinformatics , vol.25 , Issue.21 , pp. 2855-2856
    • Lê Cao, K.-A.1    González, I.2    Déjean, S.3
  • 4
    • 84867283138 scopus 로고    scopus 로고
    • Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    • Li W, Zhang S, Liu C-C, Zhou XJ. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.Bioinformatics. 2012; 28(19):2458-66. doi: 10.1093/bioinformatics/bts476.
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2458-2466
    • Li, W.1    Zhang, S.2    Liu, C.-C.3    Zhou, X.J.4
  • 5
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: a network-based approach to human disease
    • Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12(1):56-68. doi: 10.1038/nrg2918.
    • (2011) Nat Rev Genet , vol.12 , Issue.1 , pp. 56-68
    • Barabási, A.-L.1    Gulbahce, N.2    Loscalzo, J.3
  • 6
    • 0003632945 scopus 로고    scopus 로고
    • Data analysis: a Bayesian tutorial
    • New York, USA: Oxford University Press
    • Skilling J. Data analysis: a Bayesian tutorial. New York, USA: Oxford University Press; 2006.
    • (2006)
    • Skilling, J.1
  • 7
    • 0001120413 scopus 로고
    • A bayesian analysis of some nonparametric problems
    • Ferguson TS. A bayesian analysis of some nonparametric problems. Ann Stat. 1973; 1:209-30.
    • (1973) Ann Stat , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 8
    • 0011420552 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks, Learning in Graphical Models
    • Netherlands: Springer
    • Heckerman D. A tutorial on learning with Bayesian networks, Learning in Graphical Models. Netherlands: Springer; 1998, pp. 301-354.
    • (1998) , pp. 301-354
    • Heckerman, D.1
  • 9
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks.
    • Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks.Bioinformatics. 2006; 22(14):184-90. doi: 10.1093/bioinformatics/btl230.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 184-190
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 10
    • 0033707946 scopus 로고    scopus 로고
    • Using bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using bayesian networks to analyze expression data. J Comput Biol. 2000; 7(3-4):601-20. doi: 10.1089/106652700750050961.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 11
    • 78649976005 scopus 로고    scopus 로고
    • An integrated approach to uncover drivers of cancer
    • Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, et al. An integrated approach to uncover drivers of cancer. Cell. 2010; 143(6):1005-17. doi: 10.1016/j.cell.2010.11.013.
    • (2010) Cell , vol.143 , Issue.6 , pp. 1005-1017
    • Akavia, U.D.1    Litvin, O.2    Kim, J.3    Sanchez-Garcia, F.4    Kotliar, D.5    Causton, H.C.6
  • 12
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009; 25(22):2906-12. doi: 10.1093/bioinformatics/btp543.
    • (2009) Bioinformatics , vol.25 , Issue.22 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 13
    • 77953936121 scopus 로고    scopus 로고
    • An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer
    • Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol. 2010; 4(1):67.
    • (2010) BMC Syst Biol , vol.4 , Issue.1 , pp. 67
    • Chari, R.1    Coe, B.P.2    Vucic, E.A.3    Lockwood, W.W.4    Lam, W.L.5
  • 14
    • 84873859243 scopus 로고    scopus 로고
    • Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data
    • Aure MR, Steinfeld I, Baumbusch LO, Liestøl K, Lipson D, Nyberg S, et al. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One. 2013; 8(1):53014. 10.1371/journal.pone.0053014.
    • (2013) PLoS One , vol.8 , Issue.1 , pp. 53014
    • Aure, M.R.1    Steinfeld, I.2    Baumbusch, L.O.3    Liestøl, K.4    Lipson, D.5    Nyberg, S.6
  • 16
    • 84887057120 scopus 로고    scopus 로고
    • Network-based analysis of omics with multi-objective optimization
    • Mosca E, Milanesi L. Network-based analysis of omics with multi-objective optimization. Mol Biosyst. 2013; 9(12):2971-80. doi: 10.1039/c3mb70327d.
    • (2013) Mol Biosyst , vol.9 , Issue.12 , pp. 2971-2980
    • Mosca, E.1    Milanesi, L.2
  • 17
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014; 11(3):333-7. doi: 10.1038/nmeth.2810.
    • (2014) Nat Methods , vol.11 , Issue.3 , pp. 333-337
    • Wang, B.1    Mezlini, A.M.2    Demir, F.3    Fiume, M.4    Tu, Z.5    Brudno, M.6
  • 19
    • 79952606011 scopus 로고    scopus 로고
    • Cnamet: an r package for integrating copy number, methylation and expression data
    • Louhimo R, Hautaniemi S. Cnamet: an r package for integrating copy number, methylation and expression data. Bioinformatics. 2011; 27(6):887-8.
    • (2011) Bioinformatics , vol.27 , Issue.6 , pp. 887-888
    • Louhimo, R.1    Hautaniemi, S.2
  • 20
    • 84902257693 scopus 로고    scopus 로고
    • A multivariate approach to the integration of multi-omics datasets
    • Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics. 2014; 15:162. doi: 10.1186/1471-2105-15-162.
    • (2014) BMC Bioinformatics , vol.15 , pp. 162
    • Meng, C.1    Kuster, B.2    Culhane, A.C.3    Gholami, A.M.4
  • 21
    • 84873961337 scopus 로고    scopus 로고
    • Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties
    • Liu Y, Devescovi V, Chen S, Nardini C. Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties. BMC Syst Biol. 2013; 7:14. doi: 10.1186/1752-0509-7-14.
    • (2013) BMC Syst Biol , vol.7 , pp. 14
    • Liu, Y.1    Devescovi, V.2    Chen, S.3    Nardini, C.4
  • 22
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (o-pls)
    • Trygg J, Wold S. Orthogonal projections to latent structures (o-pls). J Chemometrics. 2002; 16(3):119-28.
    • (2002) J Chemometrics , vol.16 , Issue.3 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 23
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal R, Trejo LJ. Kernel partial least squares regression in reproducing kernel hilbert space. J Mach Learn Res. 2002; 2:97-123.
    • (2002) J Mach Learn Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 24
    • 36949021555 scopus 로고    scopus 로고
    • Data integration in plant biology: the o2pls method for combined modeling of transcript and metabolite data
    • Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the o2pls method for combined modeling of transcript and metabolite data. Plant J. 2007; 52(6):1181-91. doi: 10.1111/j.1365-313X.2007.03293.x.
    • (2007) Plant J , vol.52 , Issue.6 , pp. 1181-1191
    • Bylesjö, M.1    Eriksson, D.2    Kusano, M.3    Moritz, T.4    Trygg, J.5
  • 25
    • 84893874008 scopus 로고    scopus 로고
    • An introduction to statistical learning
    • New York, USA: Springer
    • James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York, USA: Springer; 2013.
    • (2013)
    • James, G.1    Witten, D.2    Hastie, T.3    Tibshirani, R.4
  • 26
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to bayesian nonparametric problems
    • Antoniak CE. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. Ann Stat. 1974; 2:1152-74.
    • (1974) Ann Stat , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 27
    • 77954207953 scopus 로고    scopus 로고
    • Discovering transcriptional modules by bayesian data integration
    • Savage RS, Ghahramani Z, Griffin JE, de la Cruz BJ, Wild DL. Discovering transcriptional modules by bayesian data integration. Bioinformatics. 2010; 26(12):158-67. doi: 10.1093/bioinformatics/btq210.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 158-167
    • Savage, R.S.1    Ghahramani, Z.2    Griffin, J.E.3    de la Cruz, B.J.4    Wild, D.L.5
  • 28
    • 84870796415 scopus 로고    scopus 로고
    • Bayesian correlated clustering to integrate multiple datasets
    • Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics. 2012; 28(24):3290-7. doi: 10.1093/bioinformatics/bts595.
    • (2012) Bioinformatics , vol.28 , Issue.24 , pp. 3290-3297
    • Kirk, P.1    Griffin, J.E.2    Savage, R.S.3    Ghahramani, Z.4    Wild, D.L.5
  • 29
    • 80055083654 scopus 로고    scopus 로고
    • Patient-specific data fusion defines prognostic cancer subtypes
    • 1002227.
    • Yuan Y, Savage RS, Markowetz F. Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput Biol. 2011; 7(10):1002227. 10.1371/journal.pcbi.1002227.
    • (2011) PLoS Comput Biol , vol.7 , Issue.10
    • Yuan, Y.1    Savage, R.S.2    Markowetz, F.3
  • 30
    • 75849134576 scopus 로고    scopus 로고
    • Detailing regulatory networks through large scale data integration
    • Huttenhower C, Mutungu KT, Indik N, Yang W, Schroeder M, Forman JJ, et al. Detailing regulatory networks through large scale data integration. Bioinformatics. 2009; 25(24):3267-74. doi: 10.1093/bioinformatics/btp588.
    • (2009) Bioinformatics , vol.25 , Issue.24 , pp. 3267-3274
    • Huttenhower, C.1    Mutungu, K.T.2    Indik, N.3    Yang, W.4    Schroeder, M.5    Forman, J.J.6
  • 32
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the dirichlet process
    • Green PJ, Richardson S. Modelling heterogeneity with and without the dirichlet process. Scand J Stat. 2001; 28(2):355-75.
    • (2001) Scand J Stat , vol.28 , Issue.2 , pp. 355-375
    • Green, P.J.1    Richardson, S.2
  • 33
    • 84864470208 scopus 로고    scopus 로고
    • Steinernet: a web server for integrating 'omic' data to discover hidden components of response pathways
    • Tuncbag N, McCallum S, Huang S-SC, Fraenkel E. Steinernet: a web server for integrating 'omic' data to discover hidden components of response pathways. Nucleic Acids Res. 2012; 40(Web Server issue):505-9. doi: 10.1093/nar/gks445.
    • (2012) Nucleic Acids Res , vol.40 , Issue.WEB SERVER ISSUE , pp. 505-509
    • Tuncbag, N.1    McCallum, S.2    Huang, S.-S.3    Fraenkel, E.4
  • 34
    • 84899541058 scopus 로고    scopus 로고
    • Netclass: an r-package for network based, integrative biomarker signature discovery
    • Cun Y, Fröhlich H. Netclass: an r-package for network based, integrative biomarker signature discovery. Bioinformatics. 2014; 30(9):1325-6. http://dx.doi.org/10.1093/bioinformatics/btu025.
    • (2014) Bioinformatics , vol.30 , Issue.9 , pp. 1325-1326
    • Cun, Y.1    Fröhlich, H.2
  • 35
    • 84884370515 scopus 로고    scopus 로고
    • Nuchart: an r package to study gene spatial neighbourhoods with multi-omics annotations
    • Merelli I, Lió P, Milanesi L. Nuchart: an r package to study gene spatial neighbourhoods with multi-omics annotations. PLoS One. 2013; 8(9):75146. doi: 10.1371/journal.pone.0075146.
    • (2013) PLoS One , vol.8 , Issue.9 , pp. 75146
    • Merelli, I.1    Lió, P.2    Milanesi, L.3
  • 39
    • 84906256010 scopus 로고    scopus 로고
    • Systems biology and brain activity in neuronal pathways by smart device and advanced signal processing
    • Castellani G, Intrator N, Remondini D. Systems biology and brain activity in neuronal pathways by smart device and advanced signal processing. Front Genet. 2014; 5:1-20.
    • (2014) Front Genet , vol.5 , pp. 1-20
    • Castellani, G.1    Intrator, N.2    Remondini, D.3
  • 40
    • 84937611285 scopus 로고    scopus 로고
    • Correlations between weights and overlap in ensembles of weighted multiplex networks
    • 6-1, 062817.
    • Menichetti G, Remondini D, Bianconi G. Correlations between weights and overlap in ensembles of weighted multiplex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2014; 90(6-1):062817.
    • (2014) Phys Rev E Stat Nonlin Soft Matter Phys , vol.90
    • Menichetti, G.1    Remondini, D.2    Bianconi, G.3
  • 42
    • 80054991882 scopus 로고    scopus 로고
    • Network-based methods for human disease gene prediction
    • Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Brief Funct Genomics. 2011; 10(5):280-93. doi: 10.1093/bfgp/elr024.
    • (2011) Brief Funct Genomics , vol.10 , Issue.5 , pp. 280-293
    • Wang, X.1    Gulbahce, N.2    Yu, H.3
  • 43
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • In: San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • Kondor RI, Lafferty J. Diffusion kernels on graphs and other discrete input spaces. In: ICML, vol. 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.: 2002. p. 315-22.
    • (2002) ICML , vol.2 , pp. 315-322
    • Kondor, R.I.1    Lafferty, J.2
  • 44
    • 84887084951 scopus 로고    scopus 로고
    • Network-based stratification of tumor mutations
    • Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013; 10(11):1108-15. doi: 10.1038/nmeth.2651.
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1108-1115
    • Hofree, M.1    Shen, J.P.2    Carter, H.3    Gross, A.4    Ideker, T.5
  • 45
    • 79952389826 scopus 로고    scopus 로고
    • Algorithms for detecting significantly mutated pathways in cancer
    • Vandin F, Upfal E, Raphael BJ. Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol. 2011; 18(3):507-22. doi: 10.1089/cmb.2010.0265.
    • (2011) J Comput Biol , vol.18 , Issue.3 , pp. 507-522
    • Vandin, F.1    Upfal, E.2    Raphael, B.J.3
  • 46
    • 57149103917 scopus 로고    scopus 로고
    • Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions
    • Qi Y, Suhail Y, Lin Y-y, Boeke JD, Bader JS. Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Res. 2008; 18(12):1991-2004.
    • (2008) Genome Res , vol.18 , Issue.12 , pp. 1991-2004
    • Qi, Y.1    Suhail, Y.2    Lin, Y.-Y.3    Boeke, J.D.4    Bader, J.S.5
  • 47
    • 84943639849 scopus 로고
    • Random walks and electric networks
    • Doyle PG, Snell JL. Random walks and electric networks. AMC. 1984; 10:12.
    • (1984) AMC , vol.10 , pp. 12
    • Doyle, P.G.1    Snell, J.L.2
  • 48
    • 42949096140 scopus 로고    scopus 로고
    • Eqed: an efficient method for interpreting eqtl associations using protein networks
    • Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T. Eqed: an efficient method for interpreting eqtl associations using protein networks. Mol Syst Biol. 2008; 4:162. doi: 10.1038/msb.2008.4.
    • (2008) Mol Syst Biol , vol.4 , pp. 162
    • Suthram, S.1    Beyer, A.2    Karp, R.M.3    Eldar, Y.4    Ideker, T.5
  • 49
    • 84892887285 scopus 로고    scopus 로고
    • Laplacian dynamics on general graphs
    • Mirzaev I, Gunawardena J. Laplacian dynamics on general graphs. Bull Math Biol. 2013; 75(11):2118-49. doi: 10.1007/s11538-013-9884-8.
    • (2013) Bull Math Biol , vol.75 , Issue.11 , pp. 2118-2149
    • Mirzaev, I.1    Gunawardena, J.2
  • 50
    • 77952808324 scopus 로고    scopus 로고
    • Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network
    • Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics. 2010; 26(9):1219-24. doi: 10.1093/bioinformatics/btq108.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1219-1224
    • Li, Y.1    Patra, J.C.2
  • 51
    • 77954195272 scopus 로고    scopus 로고
    • Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm
    • Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics. 2010; 26(12):237-45. doi: 10.1093/bioinformatics/btq182.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 237-245
    • Vaske, C.J.1    Benz, S.C.2    Sanborn, J.Z.3    Earl, D.4    Szeto, C.5    Zhu, J.6
  • 52
    • 5344244656 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008. ISBN 3-900051-07-0. http://www.R-project.org.
    • (2008) R: A Language and Environment for Statistical Computing
  • 53
    • 84991950722 scopus 로고    scopus 로고
    • Version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc
    • MATLAB. Version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc; 2010.
    • (2010)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.