메뉴 건너뛰기




Volumn 22, Issue , 2012, Pages 467-476

Bayesian regularization of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GENE EXPRESSION; GENES; REVERSE ENGINEERING;

EID: 84954236782     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (32)
  • 1
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • Ahmed, A. and Xing, E. P. (2009) Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences, 106, 11878-11883.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 2
    • 0035800467 scopus 로고    scopus 로고
    • Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
    • Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P. and Kay, S. A. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880-883.
    • (2001) Science , vol.293 , pp. 880-883
    • Alabadi, D.1    Oyama, T.2    Yanovsky, M.J.3    Harmon, F.G.4    Mas, P.5    Kay, S.A.6
  • 3
    • 0038538420 scopus 로고    scopus 로고
    • Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions
    • Andrieu, C., Davy, M. and Doucet, A. (2003) Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions. Signal Processing, IEEE Transactions on, 51, 1762-1770.
    • (2003) Signal Processing IEEE Transactions on , vol.51 , pp. 1762-1770
    • Andrieu, C.1    Davy, M.2    Doucet, A.3
  • 4
    • 0033349354 scopus 로고    scopus 로고
    • Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • Andrieu, C. and Doucet, A. (1999) Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions on Signal Processing, 47, 2667-2676.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 9
    • 33646687960 scopus 로고    scopus 로고
    • Exact and efficient Bayesian inference for multiple changepoint problems
    • Fearnhead, P. (2006) Exact and efficient Bayesian inference for multiple changepoint problems. Statistics and Computing, 16, 203-213.
    • (2006) Statistics and Computing , vol.16 , pp. 203-213
    • Fearnhead, P.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Giudici, P. and Castelo, R. (2003) Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50, 127-158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 13
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 14
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • Grzegorczyk, M. and Husmeier, D. (2011) Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning, 83, 355-419.
    • (2011) Machine Learning , vol.83 , pp. 355-419
    • Grzegorczyk, M.1    Husmeier, D.2
  • 15
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • Grzegorczyk, M., Husmeier, D., Edwards, K., Ghazal, P. and Millar, A. (2008) Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioin-formatics, 24, 2071-2078.
    • (2008) Bioin-formatics , vol.24 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.3    Ghazal, P.4    Millar, A.5
  • 17
    • 33644814040 scopus 로고    scopus 로고
    • ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY
    • Kikis, E., Khanna, R. and Quail, P. (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J., 44, 300-313.
    • (2005) Plant J. , vol.44 , pp. 300-313
    • Kikis, E.1    Khanna, R.2    Quail, P.3
  • 18
    • 77956517638 scopus 로고    scopus 로고
    • Sparsistent learning of varying-coefficient models with structural changes
    • Bengio, Y., Schuurmans, D., Laf-ferty, J., Williams, C. K. I. and Culotta, A. (eds.)
    • Kolar, M., Song, L. and Xing, E. (2009) Sparsistent learning of varying-coefficient models with structural changes. In Bengio, Y., Schuurmans, D., Laf-ferty, J., Williams, C. K. I. and Culotta, A. (eds.), Advances in Neural Information Processing Systems (NIPS), volume 22, pp. 1006-1014.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 1006-1014
    • Kolar, M.1    Song, L.2    Xing, E.3
  • 19
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • Lebre, S., Becq, J., Devaux, F., Lelandais, G. and Stumpf, M. (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Systems Biology, 4.
    • (2010) BMC Systems Biology , vol.4
    • Lebre, S.1    Becq, J.2    Devaux, F.3    Lelandais, G.4    Stumpf, M.5
  • 22
    • 33745456764 scopus 로고    scopus 로고
    • Plant circadian rhythms
    • McClung, C. R. (2006) Plant circadian rhythms. Plant Cell, 18, 792-803.
    • (2006) Plant Cell , vol.18 , pp. 792-803
    • McClung, C.R.1
  • 24
    • 33644917699 scopus 로고    scopus 로고
    • On recursive estimation for time varying autoregressive processes
    • Moulines, E., Priouret, P. and Roueff, F. (2005) On recursive estimation for time varying autoregressive processes. Annals ofStatistics, 33, 2610-2654.
    • (2005) Annals OfStatistics , vol.33 , pp. 2610-2654
    • Moulines, E.1    Priouret, P.2    Roueff, F.3
  • 28
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. and Nolan, G. P. (2005) Protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 29
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • Berkeley University Press
    • Stein, C. (1955) Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 197-206. Berkeley University Press.
    • (1955) Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 197-206
    • Stein, C.1
  • 30
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • Talih, M. and Hengartner, N. (2005) Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67, 321-341.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , pp. 321-341
    • Talih, M.1    Hengartner, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.