메뉴 건너뛰기




Volumn 230, Issue 1, 2016, Pages 136-153

Machine learning approaches for improving condition-based maintenance of naval propulsion plants

Author keywords

asset decay forecast; COmbined Diesel eLectric And Gas propulsion plant; Condition based maintenance; gas turbine; machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; GAS TURBINES; GASES; LEARNING SYSTEMS; MAINTENANCE; PROPULSION; SHIP PROPULSION; SHIPBUILDING;

EID: 84953876479     PISSN: 14750902     EISSN: 20413084     Source Type: Journal    
DOI: 10.1177/1475090214540874     Document Type: Article
Times cited : (137)

References (73)
  • 2
    • 34848834882 scopus 로고    scopus 로고
    • Adaptive Mamdani fuzzy model for condition-based maintenance
    • Kothamasu R, Huang SH,. Adaptive Mamdani fuzzy model for condition-based maintenance. Fuzzy Set Syst 2007; 158 (24): 2715-2733.
    • (2007) Fuzzy Set Syst , vol.158 , Issue.24 , pp. 2715-2733
    • Kothamasu, R.1    Huang, S.H.2
  • 3
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A, Yang BS,. Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Pr 2007; 21 (6): 2560-2574.
    • (2007) Mech Syst Signal Pr , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 5
    • 77958041293 scopus 로고    scopus 로고
    • Current status of machine prognostics in condition-based maintenance: A review
    • Peng Y, Dong M, Zuo MJ,. Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Tech 2010; 50 (1-4): 297-313.
    • (2010) Int J Adv Manuf Tech , vol.50 , Issue.1-4 , pp. 297-313
    • Peng, Y.1    Dong, M.2    Zuo, M.J.3
  • 6
    • 0034813955 scopus 로고    scopus 로고
    • Intelligent predictive decision support system for condition-based maintenance
    • Yam R, Tse P, Li L, et al. Intelligent predictive decision support system for condition-based maintenance. Int J Adv Manuf Tech 2001; 17 (5): 383-391.
    • (2001) Int J Adv Manuf Tech , vol.17 , Issue.5 , pp. 383-391
    • Yam, R.1    Tse, P.2    Li, L.3
  • 7
    • 33747190367 scopus 로고    scopus 로고
    • Scheduling preventive railway maintenance activities
    • Budai G, Huisman D, Dekker R,. Scheduling preventive railway maintenance activities. J Oper Res Soc 2005; 57 (9): 1035-1044.
    • (2005) J Oper Res Soc , vol.57 , Issue.9 , pp. 1035-1044
    • Budai, G.1    Huisman, D.2    Dekker, R.3
  • 13
    • 33846938023 scopus 로고    scopus 로고
    • The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business
    • Al-Najjar B,. The lack of maintenance and not maintenance which costs: a model to describe and quantify the impact of vibration-based maintenance on company's business. Int J Prod Econ 2007; 107 (1): 260-273.
    • (2007) Int J Prod Econ , vol.107 , Issue.1 , pp. 260-273
    • Al-Najjar, B.1
  • 14
    • 0242551785 scopus 로고    scopus 로고
    • Towards a value-based view on operations and maintenance performance management
    • Liyanage JP, Kumar U,. Towards a value-based view on operations and maintenance performance management. J Qual Maint Eng 2003; 9 (4): 333-350.
    • (2003) J Qual Maint Eng , vol.9 , Issue.4 , pp. 333-350
    • Liyanage, J.P.1    Kumar, U.2
  • 15
    • 84953925754 scopus 로고    scopus 로고
    • (FINCANTIERI S.p.A. - B.U. Offshore) Offshore Mediterranean Conference and Exhibition, 20-22 March, Ravenna, Italy, Offshore Mediterranean Conference
    • Sebastiani L, Pescetto A, Ambrosio L, (FINCANTIERI S.p.A.-B.U. Offshore) Offshore Mediterranean Conference and Exhibition, 20-22 March, Ravenna, Italy, 2013, Offshore Mediterranean Conference.
    • (2013)
    • Sebastiani, L.1    Pescetto, A.2    Ambrosio, L.3
  • 16
    • 0016496939 scopus 로고
    • Parameter selection for multiple fault diagnostics of gas turbine engines
    • Urban LA,. Parameter selection for multiple fault diagnostics of gas turbine engines. J Eng P 1975; 97 (2): 225-231.
    • (1975) J Eng P , vol.97 , Issue.2 , pp. 225-231
    • Urban, L.A.1
  • 17
    • 84865451580 scopus 로고    scopus 로고
    • New Alstom monitoring tools leveraging artificial neural network technologies
    • ASME and Alstom Technology Ltd. Vancouver, British Columbia, Canada, June 6-10, 2011
    • Palmé T, Breuhaus P, Assadi M, et al. New Alstom monitoring tools leveraging artificial neural network technologies. In: Turbo expo: turbine technical conference and exposition, ASME and Alstom Technology Ltd., Vancouver, British Columbia, Canada, June 6-10, 2011.
    • Turbo Expo: Turbine Technical Conference and Exposition
    • Palmé, T.1    Breuhaus, P.2    Assadi, M.3
  • 18
    • 10244270054 scopus 로고    scopus 로고
    • The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: A comparative study
    • Volponi AJ, DePold H, Ganguli R, et al. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. J Eng Gas Turb Power 2003; 125 (4): 917-924.
    • (2003) J Eng Gas Turb Power , vol.125 , Issue.4 , pp. 917-924
    • Volponi, A.J.1    DePold, H.2    Ganguli, R.3
  • 19
    • 85003369940 scopus 로고
    • Gas path analysis applied to turbine engine condition monitoring
    • Urban LA,. Gas path analysis applied to turbine engine condition monitoring. J Aircraft 1973; 10 (7): 400-406.
    • (1973) J Aircraft , vol.10 , Issue.7 , pp. 400-406
    • Urban, L.A.1
  • 33
    • 11644252341 scopus 로고    scopus 로고
    • An analysis of axial compressor fouling and a blade cleaning method
    • Tarabrin A, Schurovsky V, Bodrov A, et al. An analysis of axial compressor fouling and a blade cleaning method. J Turbomach 1998; 120 (2): 256-261.
    • (1998) J Turbomach , vol.120 , Issue.2 , pp. 256-261
    • Tarabrin, A.1    Schurovsky, V.2    Bodrov, A.3
  • 34
    • 37349109495 scopus 로고
    • "fouling of Axial Flow Compressors" - Causes, Effects, Detection, and Control
    • Turbomachinery Laboratory, Texas A & M University, College Station, Texas
    • Meher-Homji C.B., Focke A. B., Wool dridge M. B., 1989, "Fouling of Axial Flow Compressors"-Causes, Effects, Detection, and Control., In: Proceedings of the Eighteenth Turbomachinery Symposium, Turbomachinery Laboratory, Texas A & M University, College Station, Texas, pp. 55-76.
    • (1989) Proceedings of the Eighteenth Turbomachinery Symposium , pp. 55-76
    • Meher-Homji, C.B.1    Focke, A.B.2    Wool Dridge, M.B.3
  • 35
    • 0024640921 scopus 로고    scopus 로고
    • Predicting gas turbine performance degradation due to compressor fouling using computer simulation techniques
    • Aker GF, Saravanamuttoo HIH,. Predicting gas turbine performance degradation due to compressor fouling using computer simulation techniques. J Eng Gas Turb Power 2006; 111 (2): 343-350.
    • (2006) J Eng Gas Turb Power , vol.111 , Issue.2 , pp. 343-350
    • Aker, G.F.1    Saravanamuttoo, H.I.H.2
  • 38
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B,. A tutorial on support vector regression. Stat Comput 2004; 14 (3): 199-222.
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 39
    • 0032166052 scopus 로고    scopus 로고
    • The importance of convexity in learning with squared loss
    • Lee WS, Bartlett PL, Williamson RC,. The importance of convexity in learning with squared loss. IEEE T Inform Theory 1998; 44 (5): 1974-1980.
    • (1998) IEEE T Inform Theory , vol.44 , Issue.5 , pp. 1974-1980
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 40
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • Lugosi G, Zeger K,. Nonparametric estimation via empirical risk minimization. IEEE T Inform Theory 1995; 41 (3): 677-687.
    • (1995) IEEE T Inform Theory , vol.41 , Issue.3 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 43
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Wolpert DH, Macready WG,. No free lunch theorems for optimization. IEEE T Evolut Comput 1997; 1 (1): 67-82.
    • (1997) IEEE T Evolut Comput , vol.1 , Issue.1 , pp. 67-82
    • Wolpert, D.H.1    MacReady, W.G.2
  • 45
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan SJ, Yang Q,. A survey on transfer learning. IEEE T Knowl Data En 2010; 22 (10): 1345-1359.
    • (2010) IEEE T Knowl Data en , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 47
    • 84862001051 scopus 로고    scopus 로고
    • Multi-output learning via spectral filtering
    • Baldassarre L, Rosasco L, Barla A, et al. Multi-output learning via spectral filtering. Mach Learn 2012; 87 (3): 259-301.
    • (2012) Mach Learn , vol.87 , Issue.3 , pp. 259-301
    • Baldassarre, L.1    Rosasco, L.2    Barla, A.3
  • 48
    • 0003314447 scopus 로고
    • Empirical processes: Theory and applications
    • Institute of Mathematical Statistics, 2, Empirical Processes: Theory and Applications
    • Pollard D,. Empirical processes: theory and applications. In: NSF-CBMS regional conference series in probability and statistics, Institute of Mathematical Statistics, Vol. 2, Empirical Processes: Theory and Applications, 1990, pp. 1-86. Available at: http://www.jstor.org/stable/4153175.
    • (1990) NSF-CBMS Regional Conference Series in Probability and Statistics , pp. 1-86
    • Pollard, D.1
  • 49
    • 34548537866 scopus 로고    scopus 로고
    • Optimal rates for the regularized least-squares algorithm
    • Caponnetto A, De Vito E,. Optimal rates for the regularized least-squares algorithm. Found Comput Math 2007; 7 (3): 331-368.
    • (2007) Found Comput Math , vol.7 , Issue.3 , pp. 331-368
    • Caponnetto, A.1    De Vito, E.2
  • 50
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem
    • In. Springer Berlin Heidelberg. Amsterdam, The Netherlands, 16 to 19
    • Schölkopf B, Herbrich R, Smola AJ,. A generalized representer theorem. In Computational learning theory pp. 416-426. Springer Berlin Heidelberg. Amsterdam, The Netherlands, 16 to 19, 2001.
    • (2001) Computational Learning Theory , pp. 416-426
    • Schölkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 51
    • 84898990165 scopus 로고    scopus 로고
    • The kernel trick for distances
    • Vancouver, British Columbia, Canada, December
    • Schölkopf B,. The kernel trick for distances. In: Neural information processing systems, Vancouver, British Columbia, Canada, December, 2001: 301-307.
    • (2001) Neural Information Processing Systems , pp. 301-307
    • Schölkopf, B.1
  • 52
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi SS, Lin CJ,. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 2003; 15 (7): 1667-1689.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 56
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J, Sun S,. A review of optimization methodologies in support vector machines. Neurocomputing 2011; 74 (17): 3609-3618.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 57
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • Keerthi SS, Shevade SK, Bhattacharyya C, et al. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput 2001; 13 (3): 637-649.
    • (2001) Neural Comput , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3
  • 58
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • De Vito E, Caponnetto A, Rosasco L,. Model selection for regularized least-squares algorithm in learning theory. Found Comput Math 2005; 5 (1): 59-85.
    • (2005) Found Comput Math , vol.5 , Issue.1 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 59
    • 0036643049 scopus 로고    scopus 로고
    • Model selection and error estimation
    • Bartlett PL, Boucheron S, Lugosi G,. Model selection and error estimation. Mach Learn 2002; 48 (1-3): 85-113.
    • (2002) Mach Learn , vol.48 , Issue.1-3 , pp. 85-113
    • Bartlett, P.L.1    Boucheron, S.2    Lugosi, G.3
  • 60
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and out-of-sample model selection and error estimation for support vector machines
    • Anguita D, Ghio A, Oneto L, et al. In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE T Neural Networ Learn Syst 2012; 23 (9): 1390-1406.
    • (2012) IEEE T Neural Networ Learn Syst , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3
  • 61
    • 76749118521 scopus 로고    scopus 로고
    • Model selection: Beyond the Bayesian/frequentist divide
    • Guyon I, Saffari A, Dror G, et al. Model selection: beyond the Bayesian/frequentist divide. J Mach Learn Res 2010; 11: 61-87.
    • (2010) J Mach Learn Res , vol.11 , pp. 61-87
    • Guyon, I.1    Saffari, A.2    Dror, G.3
  • 62
    • 0345460528 scopus 로고    scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Quebec Canada, USA, Morgan Kaufmann, August 20-25, 1995
    • Kohavi R,. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence, Palais de Congres Montreal, Quebec Canada, USA, Morgan Kaufmann, August 20-25, 1995.
    • International Joint Conference on Artificial Intelligence, Palais de Congres Montreal
    • Kohavi, R.1
  • 63
    • 79961164082 scopus 로고    scopus 로고
    • K-fold cross validation for error rate estimate in support vector machines
    • USA, Morgan Kaufmann Publishers Inc. 2009. Proceedings of the 14th International Joint Conference on Artificial Intelligence
    • Anguita D, Ghio A, Ridella S, et al. K-fold cross validation for error rate estimate in support vector machines. In: International conference on data mining, USA, Morgan Kaufmann Publishers Inc., 2009. Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2.
    • International Conference on Data Mining , vol.2
    • Anguita, D.1    Ghio, A.2    Ridella, S.3
  • 64
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich TG,. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 1998; 10 (7): 1895-1923.
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 68
    • 84952122605 scopus 로고
    • Prediction, linear regression and the minimum sum of relative errors
    • Narula SC, Wellington JF,. Prediction, linear regression and the minimum sum of relative errors. Technometrics 1977; 19 (2): 185-190.
    • (1977) Technometrics , vol.19 , Issue.2 , pp. 185-190
    • Narula, S.C.1    Wellington, J.F.2
  • 69
    • 78649400343 scopus 로고    scopus 로고
    • Least absolute relative error estimation
    • Chen K, Guo S, Lin Y, et al. Least absolute relative error estimation. J Am Stat Assoc 2010; 105 (491): 1104-1112.
    • (2010) J Am Stat Assoc , vol.105 , Issue.491 , pp. 1104-1112
    • Chen, K.1    Guo, S.2    Lin, Y.3
  • 70
    • 61849142212 scopus 로고    scopus 로고
    • Nearly homogeneous multi-partitioning with a deterministic generator
    • Aupetit M,. Nearly homogeneous multi-partitioning with a deterministic generator. Neurocomputing 2009; 72 (7): 1379-1389.
    • (2009) Neurocomputing , vol.72 , Issue.7 , pp. 1379-1389
    • Aupetit, M.1
  • 71
    • 84860248501 scopus 로고    scopus 로고
    • Ship electric propulsion: Analyses through modeling and simulation marine 2011
    • Lisbon, Portugal, 28-30 September 2011
    • Coraddu A, Figari M,. Ship electric propulsion: analyses through modeling and simulation marine 2011. In: IV Computational methods in marine engineering, MARINE 2011, Lisbon, Portugal, 28-30 September 2011
    • IV Computational Methods in Marine Engineering, MARINE 2011
    • Coraddu, A.1    Figari, M.2
  • 72
    • 84871955495 scopus 로고    scopus 로고
    • Ship electric propulsion with a sensorless permanent magnet synchronous motor: A simulation study
    • Li Z, Yan X, Peng Z,. Ship electric propulsion with a sensorless permanent magnet synchronous motor: a simulation study. Proc IMechE, Part M: J Engineering for the Maritime Environment 2012; 226 (4): 378-386.
    • (2012) Proc IMechE, Part M: J Engineering for the Maritime Environment , vol.226 , Issue.4 , pp. 378-386
    • Li, Z.1    Yan, X.2    Peng, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.