-
2
-
-
34848834882
-
Adaptive Mamdani fuzzy model for condition-based maintenance
-
Kothamasu R, Huang SH,. Adaptive Mamdani fuzzy model for condition-based maintenance. Fuzzy Set Syst 2007; 158 (24): 2715-2733.
-
(2007)
Fuzzy Set Syst
, vol.158
, Issue.24
, pp. 2715-2733
-
-
Kothamasu, R.1
Huang, S.H.2
-
3
-
-
34249661124
-
Support vector machine in machine condition monitoring and fault diagnosis
-
Widodo A, Yang BS,. Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Pr 2007; 21 (6): 2560-2574.
-
(2007)
Mech Syst Signal Pr
, vol.21
, Issue.6
, pp. 2560-2574
-
-
Widodo, A.1
Yang, B.S.2
-
5
-
-
77958041293
-
Current status of machine prognostics in condition-based maintenance: A review
-
Peng Y, Dong M, Zuo MJ,. Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Tech 2010; 50 (1-4): 297-313.
-
(2010)
Int J Adv Manuf Tech
, vol.50
, Issue.1-4
, pp. 297-313
-
-
Peng, Y.1
Dong, M.2
Zuo, M.J.3
-
6
-
-
0034813955
-
Intelligent predictive decision support system for condition-based maintenance
-
Yam R, Tse P, Li L, et al. Intelligent predictive decision support system for condition-based maintenance. Int J Adv Manuf Tech 2001; 17 (5): 383-391.
-
(2001)
Int J Adv Manuf Tech
, vol.17
, Issue.5
, pp. 383-391
-
-
Yam, R.1
Tse, P.2
Li, L.3
-
7
-
-
33747190367
-
Scheduling preventive railway maintenance activities
-
Budai G, Huisman D, Dekker R,. Scheduling preventive railway maintenance activities. J Oper Res Soc 2005; 57 (9): 1035-1044.
-
(2005)
J Oper Res Soc
, vol.57
, Issue.9
, pp. 1035-1044
-
-
Budai, G.1
Huisman, D.2
Dekker, R.3
-
8
-
-
84893943824
-
-
Pages, ISSN 1877-0428
-
Jimenez -Redondo N, Bosso N, Zeni L, Minardo A, Schubert F, Heinicke F, Simroth A, Automated and Cost Effective Maintenance for Railway (ACEM -Rail), Procedia-Social and Behavioral Sciences., Volume 48, 2012, Pages 1058-1067, ISSN 1877-0428, http://dx.doi.org/10.1016/j.sbspro.2012.06.1082.
-
(2012)
Automated and Cost Effective Maintenance for Railway (ACEM -Rail), Procedia - Social and Behavioral Sciences
, vol.48
, pp. 1058-1067
-
-
Jimenez -Redondo, N.1
Bosso, N.2
Zeni, L.3
Minardo, A.4
Schubert, F.5
Heinicke, F.6
Simroth, A.7
-
12
-
-
84927762336
-
-
published online 14 November 2013, DOI: 10.1177/1475090213509609
-
McNamara D, Cunningham A, Jenkinson I, Wang J, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, published online 14 November 2013, DOI: 10.1177/1475090213509609.
-
Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
-
-
McNamara, D.1
Cunningham, A.2
Jenkinson, I.3
Wang, J.4
-
13
-
-
33846938023
-
The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business
-
Al-Najjar B,. The lack of maintenance and not maintenance which costs: a model to describe and quantify the impact of vibration-based maintenance on company's business. Int J Prod Econ 2007; 107 (1): 260-273.
-
(2007)
Int J Prod Econ
, vol.107
, Issue.1
, pp. 260-273
-
-
Al-Najjar, B.1
-
14
-
-
0242551785
-
Towards a value-based view on operations and maintenance performance management
-
Liyanage JP, Kumar U,. Towards a value-based view on operations and maintenance performance management. J Qual Maint Eng 2003; 9 (4): 333-350.
-
(2003)
J Qual Maint Eng
, vol.9
, Issue.4
, pp. 333-350
-
-
Liyanage, J.P.1
Kumar, U.2
-
15
-
-
84953925754
-
-
(FINCANTIERI S.p.A. - B.U. Offshore) Offshore Mediterranean Conference and Exhibition, 20-22 March, Ravenna, Italy, Offshore Mediterranean Conference
-
Sebastiani L, Pescetto A, Ambrosio L, (FINCANTIERI S.p.A.-B.U. Offshore) Offshore Mediterranean Conference and Exhibition, 20-22 March, Ravenna, Italy, 2013, Offshore Mediterranean Conference.
-
(2013)
-
-
Sebastiani, L.1
Pescetto, A.2
Ambrosio, L.3
-
16
-
-
0016496939
-
Parameter selection for multiple fault diagnostics of gas turbine engines
-
Urban LA,. Parameter selection for multiple fault diagnostics of gas turbine engines. J Eng P 1975; 97 (2): 225-231.
-
(1975)
J Eng P
, vol.97
, Issue.2
, pp. 225-231
-
-
Urban, L.A.1
-
17
-
-
84865451580
-
New Alstom monitoring tools leveraging artificial neural network technologies
-
ASME and Alstom Technology Ltd. Vancouver, British Columbia, Canada, June 6-10, 2011
-
Palmé T, Breuhaus P, Assadi M, et al. New Alstom monitoring tools leveraging artificial neural network technologies. In: Turbo expo: turbine technical conference and exposition, ASME and Alstom Technology Ltd., Vancouver, British Columbia, Canada, June 6-10, 2011.
-
Turbo Expo: Turbine Technical Conference and Exposition
-
-
Palmé, T.1
Breuhaus, P.2
Assadi, M.3
-
18
-
-
10244270054
-
The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: A comparative study
-
Volponi AJ, DePold H, Ganguli R, et al. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. J Eng Gas Turb Power 2003; 125 (4): 917-924.
-
(2003)
J Eng Gas Turb Power
, vol.125
, Issue.4
, pp. 917-924
-
-
Volponi, A.J.1
DePold, H.2
Ganguli, R.3
-
19
-
-
85003369940
-
Gas path analysis applied to turbine engine condition monitoring
-
Urban LA,. Gas path analysis applied to turbine engine condition monitoring. J Aircraft 1973; 10 (7): 400-406.
-
(1973)
J Aircraft
, vol.10
, Issue.7
, pp. 400-406
-
-
Urban, L.A.1
-
22
-
-
33745595398
-
-
In Proceedings of the 31st international conference on Very large data bases Trondheim, Norway from August 30 to September 2, 2005 (VLDB '05). VLDB Endowment 1152-1163
-
Milenova Boriana L., Yarmus Joseph S., Campos Marcos M., 2005. SVM in oracle database 10g: removing the barriers to widespread adoption of support vector machines. In Proceedings of the 31st international conference on Very large data bases Trondheim, Norway from August 30 to September 2, 2005 (VLDB '05). VLDB Endowment 1152-1163.
-
(2005)
SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines
-
-
Milenova, B.L.1
Yarmus, J.S.2
Campos, M.M.3
-
23
-
-
84906240003
-
Numerical modelling of the engines governors of a CODLAG propulsion plant
-
Varna, Bulgaria
-
Altosole M, Benvenuto G, Campora U,. Numerical modelling of the engines governors of a CODLAG propulsion plant. In: Proceedings of the 10th international conference on marine sciences and technologies, Varna, Bulgaria, 2010.
-
(2010)
Proceedings of the 10th International Conference on Marine Sciences and Technologies
-
-
Altosole, M.1
Benvenuto, G.2
Campora, U.3
-
24
-
-
69249136682
-
Real-time simulation of a COGAG naval ship propulsion system
-
Altosole M, Benvenuto G, Figari M, et al. Real-time simulation of a COGAG naval ship propulsion system. Proc IMechE, Part M: J Engineering for the Maritime Environment 2009; 223 (1): 47-62.
-
(2009)
Proc IMechE, Part M: J Engineering for the Maritime Environment
, vol.223
, Issue.1
, pp. 47-62
-
-
Altosole, M.1
Benvenuto, G.2
Figari, M.3
-
25
-
-
33646003275
-
A gas turbine modular model for ship propulsion studies
-
Naples, Italy, 21-23 September 2005
-
Benvenuto G, Campora U,. A gas turbine modular model for ship propulsion studies. In: Symposium on high speed marine vehicles, Proceedings of the 7th Symposium on High Speed Marine Vehicles, Naples, Italy, 21-23 September 2005.
-
Symposium on High Speed Marine Vehicles, Proceedings of the 7th Symposium on High Speed Marine Vehicles
-
-
Benvenuto, G.1
Campora, U.2
-
26
-
-
84983669677
-
Performance prediction of a faulty marine diesel engine under different governor settings
-
Naples, Italy, 28-30 June 2007
-
Benvenuto G, Campora U,. Performance prediction of a faulty marine diesel engine under different governor settings. In: International conference on marine research and transportation, 2nd International Conference on Marine Research and Transportation, Naples, Italy, 28-30 June 2007.
-
International Conference on Marine Research and Transportation, 2nd International Conference on Marine Research and Transportation
-
-
Benvenuto, G.1
Campora, U.2
-
31
-
-
37649024633
-
Marine gas turbine propulsion system simulation: Comparison of different approaches
-
Genova, Italy, June 2006
-
Altosole M., Benvenuto G., Campora U., Marine gas turbine propulsion system simulation: Comparison of different approaches. In: Proceedings of the International Conference on Ship and shipping research (NAV 2006), Genova, Italy, June 2006.
-
Proceedings of the International Conference on Ship and Shipping Research (NAV 2006)
-
-
Altosole, M.1
Benvenuto, G.2
Campora, U.3
-
33
-
-
11644252341
-
An analysis of axial compressor fouling and a blade cleaning method
-
Tarabrin A, Schurovsky V, Bodrov A, et al. An analysis of axial compressor fouling and a blade cleaning method. J Turbomach 1998; 120 (2): 256-261.
-
(1998)
J Turbomach
, vol.120
, Issue.2
, pp. 256-261
-
-
Tarabrin, A.1
Schurovsky, V.2
Bodrov, A.3
-
34
-
-
37349109495
-
"fouling of Axial Flow Compressors" - Causes, Effects, Detection, and Control
-
Turbomachinery Laboratory, Texas A & M University, College Station, Texas
-
Meher-Homji C.B., Focke A. B., Wool dridge M. B., 1989, "Fouling of Axial Flow Compressors"-Causes, Effects, Detection, and Control., In: Proceedings of the Eighteenth Turbomachinery Symposium, Turbomachinery Laboratory, Texas A & M University, College Station, Texas, pp. 55-76.
-
(1989)
Proceedings of the Eighteenth Turbomachinery Symposium
, pp. 55-76
-
-
Meher-Homji, C.B.1
Focke, A.B.2
Wool Dridge, M.B.3
-
35
-
-
0024640921
-
Predicting gas turbine performance degradation due to compressor fouling using computer simulation techniques
-
Aker GF, Saravanamuttoo HIH,. Predicting gas turbine performance degradation due to compressor fouling using computer simulation techniques. J Eng Gas Turb Power 2006; 111 (2): 343-350.
-
(2006)
J Eng Gas Turb Power
, vol.111
, Issue.2
, pp. 343-350
-
-
Aker, G.F.1
Saravanamuttoo, H.I.H.2
-
36
-
-
84957713108
-
-
PhD Thesis, University of Genova, Genova
-
Martelli M,. PhD Thesis, Marine Propulsion Simulation: Methods and Results, Marine Propulsion Simulation: Methods and Results., University of Genova, Genova, 2014.
-
(2014)
Marine Propulsion Simulation: Methods and Results, Marine Propulsion Simulation: Methods and Results
-
-
Martelli, M.1
-
38
-
-
4043137356
-
A tutorial on support vector regression
-
Smola AJ, Schölkopf B,. A tutorial on support vector regression. Stat Comput 2004; 14 (3): 199-222.
-
(2004)
Stat Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
39
-
-
0032166052
-
The importance of convexity in learning with squared loss
-
Lee WS, Bartlett PL, Williamson RC,. The importance of convexity in learning with squared loss. IEEE T Inform Theory 1998; 44 (5): 1974-1980.
-
(1998)
IEEE T Inform Theory
, vol.44
, Issue.5
, pp. 1974-1980
-
-
Lee, W.S.1
Bartlett, P.L.2
Williamson, R.C.3
-
40
-
-
0029307575
-
Nonparametric estimation via empirical risk minimization
-
Lugosi G, Zeger K,. Nonparametric estimation via empirical risk minimization. IEEE T Inform Theory 1995; 41 (3): 677-687.
-
(1995)
IEEE T Inform Theory
, vol.41
, Issue.3
, pp. 677-687
-
-
Lugosi, G.1
Zeger, K.2
-
43
-
-
0031118203
-
No free lunch theorems for optimization
-
Wolpert DH, Macready WG,. No free lunch theorems for optimization. IEEE T Evolut Comput 1997; 1 (1): 67-82.
-
(1997)
IEEE T Evolut Comput
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolpert, D.H.1
MacReady, W.G.2
-
45
-
-
77956031473
-
A survey on transfer learning
-
Pan SJ, Yang Q,. A survey on transfer learning. IEEE T Knowl Data En 2010; 22 (10): 1345-1359.
-
(2010)
IEEE T Knowl Data en
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
46
-
-
84866684297
-
Multi-output LS-SVR machine in extended feature space
-
Tianjin, IEEE, 2-4 July 2012
-
Zhang W, Liu X, Ding Y, et al. Multi-output LS-SVR machine in extended feature space. In: IEEE international conference on computational intelligence for measurement systems and applications (CIMSA), Tianjin, IEEE, 2-4 July 2012.
-
IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA)
-
-
Zhang, W.1
Liu, X.2
Ding, Y.3
-
47
-
-
84862001051
-
Multi-output learning via spectral filtering
-
Baldassarre L, Rosasco L, Barla A, et al. Multi-output learning via spectral filtering. Mach Learn 2012; 87 (3): 259-301.
-
(2012)
Mach Learn
, vol.87
, Issue.3
, pp. 259-301
-
-
Baldassarre, L.1
Rosasco, L.2
Barla, A.3
-
48
-
-
0003314447
-
Empirical processes: Theory and applications
-
Institute of Mathematical Statistics, 2, Empirical Processes: Theory and Applications
-
Pollard D,. Empirical processes: theory and applications. In: NSF-CBMS regional conference series in probability and statistics, Institute of Mathematical Statistics, Vol. 2, Empirical Processes: Theory and Applications, 1990, pp. 1-86. Available at: http://www.jstor.org/stable/4153175.
-
(1990)
NSF-CBMS Regional Conference Series in Probability and Statistics
, pp. 1-86
-
-
Pollard, D.1
-
49
-
-
34548537866
-
Optimal rates for the regularized least-squares algorithm
-
Caponnetto A, De Vito E,. Optimal rates for the regularized least-squares algorithm. Found Comput Math 2007; 7 (3): 331-368.
-
(2007)
Found Comput Math
, vol.7
, Issue.3
, pp. 331-368
-
-
Caponnetto, A.1
De Vito, E.2
-
50
-
-
84865131152
-
A generalized representer theorem
-
In. Springer Berlin Heidelberg. Amsterdam, The Netherlands, 16 to 19
-
Schölkopf B, Herbrich R, Smola AJ,. A generalized representer theorem. In Computational learning theory pp. 416-426. Springer Berlin Heidelberg. Amsterdam, The Netherlands, 16 to 19, 2001.
-
(2001)
Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
51
-
-
84898990165
-
The kernel trick for distances
-
Vancouver, British Columbia, Canada, December
-
Schölkopf B,. The kernel trick for distances. In: Neural information processing systems, Vancouver, British Columbia, Canada, December, 2001: 301-307.
-
(2001)
Neural Information Processing Systems
, pp. 301-307
-
-
Schölkopf, B.1
-
52
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
Keerthi SS, Lin CJ,. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 2003; 15 (7): 1667-1689.
-
(2003)
Neural Comput
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.J.2
-
54
-
-
33845540199
-
-
USA, Kluwer Academic Publishers
-
Poggio T., Mukherjee S., Rifkin R., Raklin A., Verri A., Uncertainty in geometric computations. USA, Kluwer Academic Publishers, 2002, 22: 131-141.
-
(2002)
Uncertainty in Geometric Computations
, vol.22
, pp. 131-141
-
-
Poggio, T.1
Mukherjee, S.2
Rifkin, R.3
Raklin, A.4
Verri, A.5
-
56
-
-
80052955921
-
A review of optimization methodologies in support vector machines
-
Shawe-Taylor J, Sun S,. A review of optimization methodologies in support vector machines. Neurocomputing 2011; 74 (17): 3609-3618.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 3609-3618
-
-
Shawe-Taylor, J.1
Sun, S.2
-
57
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi SS, Shevade SK, Bhattacharyya C, et al. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput 2001; 13 (3): 637-649.
-
(2001)
Neural Comput
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
-
58
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
De Vito E, Caponnetto A, Rosasco L,. Model selection for regularized least-squares algorithm in learning theory. Found Comput Math 2005; 5 (1): 59-85.
-
(2005)
Found Comput Math
, vol.5
, Issue.1
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
59
-
-
0036643049
-
Model selection and error estimation
-
Bartlett PL, Boucheron S, Lugosi G,. Model selection and error estimation. Mach Learn 2002; 48 (1-3): 85-113.
-
(2002)
Mach Learn
, vol.48
, Issue.1-3
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
60
-
-
84875879529
-
In-sample and out-of-sample model selection and error estimation for support vector machines
-
Anguita D, Ghio A, Oneto L, et al. In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE T Neural Networ Learn Syst 2012; 23 (9): 1390-1406.
-
(2012)
IEEE T Neural Networ Learn Syst
, vol.23
, Issue.9
, pp. 1390-1406
-
-
Anguita, D.1
Ghio, A.2
Oneto, L.3
-
61
-
-
76749118521
-
Model selection: Beyond the Bayesian/frequentist divide
-
Guyon I, Saffari A, Dror G, et al. Model selection: beyond the Bayesian/frequentist divide. J Mach Learn Res 2010; 11: 61-87.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
-
62
-
-
0345460528
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Quebec Canada, USA, Morgan Kaufmann, August 20-25, 1995
-
Kohavi R,. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence, Palais de Congres Montreal, Quebec Canada, USA, Morgan Kaufmann, August 20-25, 1995.
-
International Joint Conference on Artificial Intelligence, Palais de Congres Montreal
-
-
Kohavi, R.1
-
63
-
-
79961164082
-
K-fold cross validation for error rate estimate in support vector machines
-
USA, Morgan Kaufmann Publishers Inc. 2009. Proceedings of the 14th International Joint Conference on Artificial Intelligence
-
Anguita D, Ghio A, Ridella S, et al. K-fold cross validation for error rate estimate in support vector machines. In: International conference on data mining, USA, Morgan Kaufmann Publishers Inc., 2009. Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2.
-
International Conference on Data Mining
, vol.2
-
-
Anguita, D.1
Ghio, A.2
Ridella, S.3
-
64
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich TG,. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 1998; 10 (7): 1895-1923.
-
(1998)
Neural Comput
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
65
-
-
84947748341
-
The K in K-fold cross validation
-
Belgium, April 25-26-27
-
Anguita D, Ghelardoni L, Ghio A, et al. The K in K-fold cross validation. In: European symposium on artificial neural networks, 20th European Symposium on Artificial Neural Networks Bruges, Belgium, April 25-26-27, 2012.
-
(2012)
European Symposium on Artificial Neural Networks, 20th European Symposium on Artificial Neural Networks Bruges
-
-
Anguita, D.1
Ghelardoni, L.2
Ghio, A.3
-
68
-
-
84952122605
-
Prediction, linear regression and the minimum sum of relative errors
-
Narula SC, Wellington JF,. Prediction, linear regression and the minimum sum of relative errors. Technometrics 1977; 19 (2): 185-190.
-
(1977)
Technometrics
, vol.19
, Issue.2
, pp. 185-190
-
-
Narula, S.C.1
Wellington, J.F.2
-
69
-
-
78649400343
-
Least absolute relative error estimation
-
Chen K, Guo S, Lin Y, et al. Least absolute relative error estimation. J Am Stat Assoc 2010; 105 (491): 1104-1112.
-
(2010)
J Am Stat Assoc
, vol.105
, Issue.491
, pp. 1104-1112
-
-
Chen, K.1
Guo, S.2
Lin, Y.3
-
70
-
-
61849142212
-
Nearly homogeneous multi-partitioning with a deterministic generator
-
Aupetit M,. Nearly homogeneous multi-partitioning with a deterministic generator. Neurocomputing 2009; 72 (7): 1379-1389.
-
(2009)
Neurocomputing
, vol.72
, Issue.7
, pp. 1379-1389
-
-
Aupetit, M.1
-
71
-
-
84860248501
-
Ship electric propulsion: Analyses through modeling and simulation marine 2011
-
Lisbon, Portugal, 28-30 September 2011
-
Coraddu A, Figari M,. Ship electric propulsion: analyses through modeling and simulation marine 2011. In: IV Computational methods in marine engineering, MARINE 2011, Lisbon, Portugal, 28-30 September 2011
-
IV Computational Methods in Marine Engineering, MARINE 2011
-
-
Coraddu, A.1
Figari, M.2
-
72
-
-
84871955495
-
Ship electric propulsion with a sensorless permanent magnet synchronous motor: A simulation study
-
Li Z, Yan X, Peng Z,. Ship electric propulsion with a sensorless permanent magnet synchronous motor: a simulation study. Proc IMechE, Part M: J Engineering for the Maritime Environment 2012; 226 (4): 378-386.
-
(2012)
Proc IMechE, Part M: J Engineering for the Maritime Environment
, vol.226
, Issue.4
, pp. 378-386
-
-
Li, Z.1
Yan, X.2
Peng, Z.3
|