메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 287-297

Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks

Author keywords

Dynamic functional connectivity; Modularity; Networks

Indexed keywords

ARTICLE; BRAIN FUNCTION; BRAIN REGION; CONNECTOME; CONTROLLED STUDY; DATA ANALYSIS; DEFAULT MODE NETWORK; FUNCTIONAL ASSESSMENT; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; IMAGE ANALYSIS; NEUROIMAGING; NEUROMODULATION; PREDICTION; PRIORITY JOURNAL; RESTING STATE NETWORK; ADULT; ALGORITHM; BRAIN; BRAIN MAPPING; FEMALE; IMAGE PROCESSING; MALE; NERVE TRACT; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES; REST;

EID: 84953307193     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2015.12.001     Document Type: Article
Times cited : (203)

References (78)
  • 8
    • 84899623638 scopus 로고    scopus 로고
    • Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
    • Betzel R.F., Griffa A., Avena-Koenigsberger A., Goñi J., Thiran J.P., Hagmann P., Sporns O. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. Netw. Sci. 2013, 1:353-373.
    • (2013) Netw. Sci. , vol.1 , pp. 353-373
    • Betzel, R.F.1    Griffa, A.2    Avena-Koenigsberger, A.3    Goñi, J.4    Thiran, J.P.5    Hagmann, P.6    Sporns, O.7
  • 11
    • 84870993474 scopus 로고    scopus 로고
    • Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
    • Calhoun V.D., Adali T. Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 2012, 5:60-73.
    • (2012) IEEE Rev. Biomed. Eng. , vol.5 , pp. 60-73
    • Calhoun, V.D.1    Adali, T.2
  • 12
    • 84908246606 scopus 로고    scopus 로고
    • The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
    • Calhoun V.D., Miller R., Pearlson G., Adali T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 2014, 84:262-274.
    • (2014) Neuron , vol.84 , pp. 262-274
    • Calhoun, V.D.1    Miller, R.2    Pearlson, G.3    Adali, T.4
  • 13
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C., Glover G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 2010, 50:81-98.
    • (2010) NeuroImage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 14
    • 84874541551 scopus 로고    scopus 로고
    • EEG correlates of time-varying bold functional connectivity
    • Chang C., Liu Z., Chen M.C., Liu X., Duyn J.H. EEG correlates of time-varying bold functional connectivity. NeuroImage 2013, 72:227-236.
    • (2013) NeuroImage , vol.72 , pp. 227-236
    • Chang, C.1    Liu, Z.2    Chen, M.C.3    Liu, X.4    Duyn, J.H.5
  • 19
    • 84930344084 scopus 로고    scopus 로고
    • Task-related modulation of functional connectivity variability and its behavioral correlations
    • Elton A., Gao W. Task-related modulation of functional connectivity variability and its behavioral correlations. Hum. Brain Mapp. 2015.
    • (2015) Hum. Brain Mapp.
    • Elton, A.1    Gao, W.2
  • 20
    • 0001165055 scopus 로고
    • Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
    • Fisher R.A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 1915, 507-521.
    • (1915) Biometrika , pp. 507-521
    • Fisher, R.A.1
  • 22
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: a review
    • Friston K.J. Functional and effective connectivity: a review. Brain Connect. 2011, 1:13-36.
    • (2011) Brain Connect. , vol.1 , pp. 13-36
    • Friston, K.J.1
  • 23
    • 68949122402 scopus 로고    scopus 로고
    • Analysis of community structure in networks of correlated data
    • Gómez S., Jensen P., Arenas A. Analysis of community structure in networks of correlated data. Phys. Rev. E 2009, 80.
    • (2009) Phys. Rev. E , vol.80
    • Gómez, S.1    Jensen, P.2    Arenas, A.3
  • 25
    • 77951138987 scopus 로고    scopus 로고
    • Performance of modularity maximization in practical contexts
    • Good B.H., de Montjoye Y.A., Clauset A. Performance of modularity maximization in practical contexts. Phys. Rev. E 2010, 81:046106.
    • (2010) Phys. Rev. E , vol.81 , pp. 046106
    • Good, B.H.1    de Montjoye, Y.A.2    Clauset, A.3
  • 26
    • 84914820204 scopus 로고    scopus 로고
    • Functional connectivity dynamics: modeling the switching behavior of the resting state
    • Hansen E.C., Battaglia D., Spiegler A., Deco G., Jirsa V.K. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage 2015, 105:525-535.
    • (2015) NeuroImage , vol.105 , pp. 525-535
    • Hansen, E.C.1    Battaglia, D.2    Spiegler, A.3    Deco, G.4    Jirsa, V.K.5
  • 28
    • 84923290637 scopus 로고    scopus 로고
    • On the danger of detecting network states in white noise
    • Hlinka J., Hadrava M. On the danger of detecting network states in white noise. Front. Comput. Neurosci. 2015, 9.
    • (2015) Front. Comput. Neurosci. , vol.9
    • Hlinka, J.1    Hadrava, M.2
  • 29
    • 34547219105 scopus 로고    scopus 로고
    • Network structure of cerebral cortex shapes functional connectivity on multiple time scales
    • Honey C.J., Kötter R., Breakspear M., Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:10240-10245.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 10240-10245
    • Honey, C.J.1    Kötter, R.2    Breakspear, M.3    Sporns, O.4
  • 30
    • 84929378097 scopus 로고    scopus 로고
    • Tracking the brain's functional coupling dynamics over development
    • Hutchison R.M., Morton J.B. Tracking the brain's functional coupling dynamics over development. J. Neurosci. 2015, 35:6849-6859.
    • (2015) J. Neurosci. , vol.35 , pp. 6849-6859
    • Hutchison, R.M.1    Morton, J.B.2
  • 32
    • 84880330342 scopus 로고    scopus 로고
    • Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
    • Hutchison R.M., Womelsdorf T., Gati J.S., Everling S., Menon R.S. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 2013, 34:2154-2177.
    • (2013) Hum. Brain Mapp. , vol.34 , pp. 2154-2177
    • Hutchison, R.M.1    Womelsdorf, T.2    Gati, J.S.3    Everling, S.4    Menon, R.S.5
  • 34
    • 84937500856 scopus 로고    scopus 로고
    • Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
    • Karahanoğlu F.I., Van De Ville D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 2015, 6.
    • (2015) Nat. Commun. , vol.6
    • Karahanoğlu, F.I.1    Van De Ville, D.2
  • 37
    • 84904052617 scopus 로고    scopus 로고
    • Dynamic functional connectivity of the default mode network tracks daydreaming
    • Kucyi A., Davis K.D. Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage 2014, 100:471-480.
    • (2014) NeuroImage , vol.100 , pp. 471-480
    • Kucyi, A.1    Davis, K.D.2
  • 38
    • 84859762521 scopus 로고    scopus 로고
    • Consensus clustering in complex networks
    • Lancichinetti A., Fortunato S. Consensus clustering in complex networks. Sci. Rep. 2012, 2.
    • (2012) Sci. Rep. , vol.2
    • Lancichinetti, A.1    Fortunato, S.2
  • 41
    • 84926317380 scopus 로고    scopus 로고
    • On spurious and real fluctuations of dynamic functional connectivity during rest
    • Leonardi N., Van De Ville D. On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage 2015, 104:430-436.
    • (2015) NeuroImage , vol.104 , pp. 430-436
    • Leonardi, N.1    Van De Ville, D.2
  • 42
  • 44
    • 84907022675 scopus 로고    scopus 로고
    • Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
    • Lindquist M.A., Xu Y., Nebel M.B., Caffo B.S. Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. NeuroImage 2014, 101:531-546.
    • (2014) NeuroImage , vol.101 , pp. 531-546
    • Lindquist, M.A.1    Xu, Y.2    Nebel, M.B.3    Caffo, B.S.4
  • 45
    • 84875045497 scopus 로고    scopus 로고
    • Time-varying functional network information extracted from brief instances of spontaneous brain activity
    • Liu X., Duyn J.H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:4392-4397.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 4392-4397
    • Liu, X.1    Duyn, J.H.2
  • 46
    • 84937711093 scopus 로고    scopus 로고
    • Community detection for correlation matrices
    • MacMahon M., Garlaschelli D. Community detection for correlation matrices. Phys. Rev. 2015, X(5):021006.
    • (2015) Phys. Rev. , vol.X , Issue.5 , pp. 021006
    • MacMahon, M.1    Garlaschelli, D.2
  • 47
    • 84929494109 scopus 로고    scopus 로고
    • Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients, in: Engineering in Medicine and Biology Society (EMBC)
    • 2014 36th Annual International Conference of the IEEE
    • Miller R.L., Yaesoubi M., Calhoun V.D. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients, in: Engineering in Medicine and Biology Society (EMBC). IEEE 2014, 3837-3840.
    • (2014) IEEE , pp. 3837-3840
    • Miller, R.L.1    Yaesoubi, M.2    Calhoun, V.D.3
  • 48
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M.E., Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69:026113.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.1    Girvan, M.2
  • 51
    • 84855455705 scopus 로고    scopus 로고
    • Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
    • Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012, 59:2142-2154.
    • (2012) NeuroImage , vol.59 , pp. 2142-2154
    • Power, J.D.1    Barnes, K.A.2    Snyder, A.Z.3    Schlaggar, B.L.4    Petersen, S.E.5
  • 54
    • 84933674257 scopus 로고    scopus 로고
    • Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects
    • Rashid B., Damaraju E., Pearlson G.D., Calhoun V.D. Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum. Neurosci. 2014, 8:897.
    • (2014) Front. Hum. Neurosci. , vol.8 , pp. 897
    • Rashid, B.1    Damaraju, E.2    Pearlson, G.D.3    Calhoun, V.D.4
  • 55
    • 33746227724 scopus 로고    scopus 로고
    • Statistical mechanics of community detection
    • Reichardt J., Bornholdt S. Statistical mechanics of community detection. Phys. Rev. E 2006, 74.
    • (2006) Phys. Rev. E , vol.74
    • Reichardt, J.1    Bornholdt, S.2
  • 56
    • 79957450857 scopus 로고    scopus 로고
    • Weight-conserving characterization of complex functional brain networks
    • Rubinov M., Sporns O. Weight-conserving characterization of complex functional brain networks. NeuroImage 2011, 56:2068-2079.
    • (2011) NeuroImage , vol.56 , pp. 2068-2079
    • Rubinov, M.1    Sporns, O.2
  • 59
    • 84929378160 scopus 로고    scopus 로고
    • Network structure shapes spontaneous functional connectivity dynamics
    • Shen K., Hutchison R.M., Bezgin G., Everling S., McIntosh A.R. Network structure shapes spontaneous functional connectivity dynamics. J. Neurosci. 2015, 35:5579-5588.
    • (2015) J. Neurosci. , vol.35 , pp. 5579-5588
    • Shen, K.1    Hutchison, R.M.2    Bezgin, G.3    Everling, S.4    McIntosh, A.R.5
  • 64
  • 65
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: a structural description of the human brain
    • Sporns O., Tononi G., Kötter R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 2005, 1:e42.
    • (2005) PLoS Comput. Biol. , vol.1 , pp. e42
    • Sporns, O.1    Tononi, G.2    Kötter, R.3
  • 66
    • 84866296479 scopus 로고    scopus 로고
    • Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis
    • Tagliazucchi E., Balenzuela P., Fraiman D., Chialvo D.R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 2012, 3:15.
    • (2012) Front. Physiol. , vol.3 , pp. 15
    • Tagliazucchi, E.1    Balenzuela, P.2    Fraiman, D.3    Chialvo, D.R.4
  • 69
    • 84937391519 scopus 로고    scopus 로고
    • The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI
    • Thompson W.H., Fransson P. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI. Front. Hum. Neurosci. 2015, 9:398.
    • (2015) Front. Hum. Neurosci. , vol.9 , pp. 398
    • Thompson, W.H.1    Fransson, P.2
  • 70
    • 80052551417 scopus 로고    scopus 로고
    • Comparing community structure to characteristics in online collegiate social networks
    • Traud A.L., Kelsic E.D., Mucha P.J., Porter M.A. Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 2011, 53:526-543.
    • (2011) SIAM Rev. , vol.53 , pp. 526-543
    • Traud, A.L.1    Kelsic, E.D.2    Mucha, P.J.3    Porter, M.A.4
  • 71
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 72
    • 84934900656 scopus 로고    scopus 로고
    • A connectome computation system for discovery science of brain
    • Xu T., Yang Z., Jiang L., Xing X.X., Zuo X.N. A connectome computation system for discovery science of brain. Sci. Bull. 2015, 60:86-95.
    • (2015) Sci. Bull. , vol.60 , pp. 86-95
    • Xu, T.1    Yang, Z.2    Jiang, L.3    Xing, X.X.4    Zuo, X.N.5
  • 75
    • 84929712322 scopus 로고    scopus 로고
    • Towards a statistical test for functional connectivity dynamics
    • Zalesky A., Breakspear M. Towards a statistical test for functional connectivity dynamics. NeuroImage 2015, 114:466-470.
    • (2015) NeuroImage , vol.114 , pp. 466-470
    • Zalesky, A.1    Breakspear, M.2
  • 76
    • 84858138977 scopus 로고    scopus 로고
    • On the use of correlation as a measure of network connectivity
    • Zalesky A., Fornito A., Bullmore E. On the use of correlation as a measure of network connectivity. NeuroImage 2012, 60:2096-2106.
    • (2012) NeuroImage , vol.60 , pp. 2096-2106
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.3
  • 78
    • 84901992386 scopus 로고    scopus 로고
    • Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
    • Zuo X.N., Xing X.X. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci. Biobehav. Rev. 2014, 45:100-118.
    • (2014) Neurosci. Biobehav. Rev. , vol.45 , pp. 100-118
    • Zuo, X.N.1    Xing, X.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.