메뉴 건너뛰기




Volumn 5, Issue 2, 2015, Pages

Community detection for correlation matrices

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; FINANCIAL DATA PROCESSING; FINANCIAL MARKETS; RANDOM VARIABLES; RISK MANAGEMENT; SUPERCONDUCTING MATERIALS;

EID: 84937711093     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.5.021006     Document Type: Article
Times cited : (164)

References (76)
  • 2
    • 84861694876 scopus 로고    scopus 로고
    • Tracking the Flow of Information into the Home: An Empirical Assessment of the Digital Revolution in the United States, 1960-2005
    • R. Neuman, Y. J. Park, and E. Panek, Tracking the Flow of Information into the Home: An Empirical Assessment of the Digital Revolution in the United States, 1960-2005, Int. J. Comm. 6, 1022 (2012).
    • (2012) Int. J. Comm. , vol.6
    • Neuman, R.1    Park, Y.J.2    Panek, E.3
  • 3
    • 84887291519 scopus 로고    scopus 로고
    • Structural and Functional Brain Networks: From Connections to Cognition
    • H. Park and K. Friston, Structural and Functional Brain Networks: From Connections to Cognition, Science 342, 1238411 (2013).
    • (2013) Science , vol.342
    • Park, H.1    Friston, K.2
  • 6
    • 42749105978 scopus 로고    scopus 로고
    • Random Matrix Theory Analysis of Cross Correlations in Financial Markets
    • A. Utsugi, K. Ino, and M. Oshikawa, Random Matrix Theory Analysis of Cross Correlations in Financial Markets, Phys. Rev. E 70, 026110 (2004).
    • (2004) Phys. Rev. E , vol.70
    • Utsugi, A.1    Ino, K.2    Oshikawa, M.3
  • 7
    • 33644996773 scopus 로고    scopus 로고
    • Financial Applications of Random Matrix Theory: Old Laces and New Pieces
    • M. Potters, J. P. Bouchaud, and L. Laloux, Financial Applications of Random Matrix Theory: Old Laces and New Pieces, Acta Phys. Pol. B 36, 2767 (2005).
    • (2005) Acta Phys. Pol. B , vol.36
    • Potters, M.1    Bouchaud, J.P.2    Laloux, L.3
  • 10
    • 84937723701 scopus 로고    scopus 로고
    • One might think of community detection itself as a geometric method, but this is not what we mean here. The geometric methods we are referring to consist in embedding techniques that reduce the complexity of the original system by projecting the latter into some metric space of low dimensionality
    • One might think of community detection itself as a geometric method, but this is not what we mean here. The geometric methods we are referring to consist in embedding techniques that reduce the complexity of the original system by projecting the latter into some metric space of low dimensionality.
  • 11
    • 74049087026 scopus 로고    scopus 로고
    • Community Detection in Graphs
    • S. Fortunato, Community Detection in Graphs, Phys. Rep. 486, 75 (2010).
    • (2010) Phys. Rep. , vol.486
    • Fortunato, S.1
  • 13
    • 51349126770 scopus 로고    scopus 로고
    • Detecting Modules in Dense Weighted Networks with the Potts Method
    • T. Heimo, J. M. Kumpula, K. Kaski, and J. Saramäki, Detecting Modules in Dense Weighted Networks with the Potts Method, J. Stat. Mech. 2008, P08007 (2008).
    • (2008) J. Stat. Mech. , vol.2008
    • Heimo, T.1    Kumpula, J.M.2    Kaski, K.3    Saramäki, J.4
  • 15
    • 84937721765 scopus 로고    scopus 로고
    • Clustering of Japanese Stock Returns by Recursive Modularity Optimization for Efficient Portfolio Diversification
    • T. Isogai, Clustering of Japanese Stock Returns by Recursive Modularity Optimization for Efficient Portfolio Diversification, J. Complex Networks 2, 557 (2014).
    • (2014) J. Complex Networks , vol.2
    • Isogai, T.1
  • 16
    • 79251620934 scopus 로고    scopus 로고
    • Clustering Financial Time Series by Network Community Analysis
    • C. Piccardi, L. Calatroni, and F. Bertoni, Clustering Financial Time Series by Network Community Analysis, Int. J. Mod. Phys. C 22, 35 (2011).
    • (2011) Int. J. Mod. Phys. C , vol.22
    • Piccardi, C.1    Calatroni, L.2    Bertoni, F.3
  • 17
    • 0000840166 scopus 로고
    • Characteristic Vectors of Bordered Matrices with Infinite Dimensions
    • E. P. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions, Ann. Math. 62, 548 (1955).
    • (1955) Ann. Math. , vol.62
    • Wigner, E.P.1
  • 19
    • 2942598370 scopus 로고    scopus 로고
    • Clustering and Information in Correlation Based Financial Networks
    • J.P Onnela, K. Kaski, and J. Kertsz, Clustering and Information in Correlation Based Financial Networks, Eur. Phys. J. B 38, 353 (2004).
    • (2004) Eur. Phys. J. B , vol.38
    • Onnela, J.P.1    Kaski, K.2    Kertsz, J.3
  • 20
    • 55949109338 scopus 로고    scopus 로고
    • Maximal Spanning Trees, Asset Graphs and Random Matrix Denoising in the Analysis of Dynamics of Financial Networks
    • T. Heimo, K. Kimmo, and J. Saramaki, Maximal Spanning Trees, Asset Graphs and Random Matrix Denoising in the Analysis of Dynamics of Financial Networks, Physica A 388, 145 (2009).
    • (2009) Physica A , vol.388
    • Heimo, T.1    Kimmo, K.2    Saramaki, J.3
  • 22
    • 9944237726 scopus 로고    scopus 로고
    • Complex Networks on Hyperbolic Surfaces
    • T. Aste, T. Di Matteo, and S. T. Hyde, Complex Networks on Hyperbolic Surfaces, Physica A 346, 20 (2005).
    • (2005) Physica A , vol.346
    • Aste, T.1    Di Matteo, T.2    Hyde, S.T.3
  • 25
    • 84857926056 scopus 로고    scopus 로고
    • Hierarchical Information Clustering by Means of Topologically Embedded Graphs
    • W. M. Song, T. Di Matteo, and T. Aste, Hierarchical Information Clustering by Means of Topologically Embedded Graphs, PLoS One 7, e31929 (2012).
    • (2012) PLoS One , vol.7
    • Song, W.M.1    Di Matteo, T.2    Aste, T.3
  • 26
    • 84898720003 scopus 로고    scopus 로고
    • Dependency Structure and Scaling Properties of Financial Time Series Are Related
    • R. Morales, T. Di Matteo, and T. Aste, Dependency Structure and Scaling Properties of Financial Time Series Are Related, Sci. Rep. 4, 4589 (2014).
    • (2014) Sci. Rep. , vol.4
    • Morales, R.1    Di Matteo, T.2    Aste, T.3
  • 29
    • 72349100047 scopus 로고    scopus 로고
    • Spectral Properties of Correlation Matrices for Some Hierarchically Nested Factor Models
    • M. Tumminello, F. Lillo, and R. N. Mantegna, Spectral Properties of Correlation Matrices for Some Hierarchically Nested Factor Models, AIP Conf. Proc. 965, 300 (2007).
    • (2007) AIP Conf. Proc. , vol.965
    • Tumminello, M.1    Lillo, F.2    Mantegna, R.N.3
  • 30
    • 79051470102 scopus 로고    scopus 로고
    • Hierarchically Nested Factor Model from Multivariate Data
    • M. Tumminello, F. Lillo, and R. N. Mantegna, Hierarchically Nested Factor Model from Multivariate Data, Europhys. Lett. 78, 30006 (2007).
    • (2007) Europhys. Lett. , vol.78
    • Tumminello, M.1    Lillo, F.2    Mantegna, R.N.3
  • 31
    • 0344153904 scopus 로고    scopus 로고
    • Computing the Nearest Correlation Matrix-A Problem from Finance
    • N. Higham, Computing the Nearest Correlation Matrix-A Problem from Finance, IMA J. Numer. Anal. 22, 329 (2002).
    • (2002) IMA J. Numer. Anal. , vol.22
    • Higham, N.1
  • 32
    • 35248812683 scopus 로고    scopus 로고
    • The Most General Methodology for Creating a Valid Correlation Matrix for Risk Management and Option Pricing Purposes
    • R. Rebonato and P. Jackel, The Most General Methodology for Creating a Valid Correlation Matrix for Risk Management and Option Pricing Purposes, J. Risk 2, 17 (1999).
    • (1999) J. Risk , vol.2
    • Rebonato, R.1    Jackel, P.2
  • 33
    • 78649426787 scopus 로고    scopus 로고
    • The Most Simple Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes
    • J. Simonian, The Most Simple Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes, Appl. Econ. Lett. 17, 1767 (2010).
    • (2010) Appl. Econ. Lett. , vol.17
    • Simonian, J.1
  • 34
    • 0041841552 scopus 로고    scopus 로고
    • Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection
    • O. Ledoit and M. Wolf, Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection, J. Empirical Finance 10, 603 (2003).
    • (2003) J. Empirical Finance , vol.10
    • Ledoit, O.1    Wolf, M.2
  • 35
    • 34648828817 scopus 로고    scopus 로고
    • Kullback-Leibler Distance as a Measure of the Information Filtered from Multivariate Data
    • M. Tumminello, F. Lillo, and R. N. Mantegna, Kullback-Leibler Distance as a Measure of the Information Filtered from Multivariate Data, Phys. Rev. E 76, 031123 (2007).
    • (2007) Phys. Rev. E , vol.76
    • Tumminello, M.1    Lillo, F.2    Mantegna, R.N.3
  • 36
    • 37649028224 scopus 로고    scopus 로고
    • Finding and Evaluating Community Structure in Networks
    • M. E. J. Newman and M. Girvan, Finding and Evaluating Community Structure in Networks, Phys. Rev. E 69, 026113 (2004).
    • (2004) Phys. Rev. E , vol.69
    • Newman, M.E.J.1    Girvan, M.2
  • 38
    • 48849084190 scopus 로고    scopus 로고
    • Maximum Likelihood:Extracting Unbiased Information from Complex Networks
    • D. Garlaschelli and M. I. Loffredo, Maximum Likelihood:Extracting Unbiased Information from Complex Networks, Phys. Rev. E 78, 015101 (2008).
    • (2008) Phys. Rev. E , vol.78
    • Garlaschelli, D.1    Loffredo, M.I.2
  • 39
    • 80051958497 scopus 로고    scopus 로고
    • Analytical Maximum-Likelihood Method to Detect Patterns in Real Networks
    • T. Squartini and D. Garlaschelli, Analytical Maximum-Likelihood Method to Detect Patterns in Real Networks, New J. Phys. 13, 083001 (2011).
    • (2011) New J. Phys. , vol.13
    • Squartini, T.1    Garlaschelli, D.2
  • 40
    • 59949099260 scopus 로고    scopus 로고
    • Generalized Bose-Fermi Statistics and Structural Correlations in Weighted Networks
    • D. Garlaschelli and M. I. Loffredo, Generalized Bose-Fermi Statistics and Structural Correlations in Weighted Networks, Phys. Rev. Lett. 102, 038701 (2009).
    • (2009) Phys. Rev. Lett. , vol.102
    • Garlaschelli, D.1    Loffredo, M.I.2
  • 42
    • 37649031573 scopus 로고    scopus 로고
    • Detecting Fuzzy Community Structures in Complex Networks with a Potts Model
    • J. Reichardt and S. Bornholdt, Detecting Fuzzy Community Structures in Complex Networks with a Potts Model, Phys. Rev. Lett. 93, 218701 (2004).
    • (2004) Phys. Rev. Lett. , vol.93
    • Reichardt, J.1    Bornholdt, S.2
  • 43
    • 46749146824 scopus 로고    scopus 로고
    • Analysis of the Structure of Complex Networks at Different Resolution Levels
    • A. Arenas, A. Fernández, and S. Gómez, Analysis of the Structure of Complex Networks at Different Resolution Levels, New J. Phys. 10, 053039 (2008).
    • (2008) New J. Phys. , vol.10
    • Arenas, A.1    Fernández, A.2    Gómez, S.3
  • 45
    • 84937700489 scopus 로고    scopus 로고
    • This is true as long as the degrees are graphic, i.e., realized by at least one network. This property is always ensured here since the values of the degrees used in the null model are the observed ones and are therefore realized by at least the empirical network
    • This is true as long as the degrees are graphic, i.e., realized by at least one network. This property is always ensured here since the values of the degrees used in the null model are the observed ones and are therefore realized by at least the empirical network.
  • 46
    • 68949122402 scopus 로고    scopus 로고
    • Analysis of Community Structure in Networks of Correlated Data
    • S. Gómez, P. Jensen, and A. Arenas, Analysis of Community Structure in Networks of Correlated Data, Phys. Rev. E 80, 016114 (2009).
    • (2009) Phys. Rev. E , vol.80
    • Gómez, S.1    Jensen, P.2    Arenas, A.3
  • 47
    • 84937689926 scopus 로고    scopus 로고
    • For homogeneously sized communities, the problem of nonunit diagonal entries can be avoided if we require i ≠ j in the summation defining Q. However, for heterogeneously sized community, the bias of the naive approach cannot be eliminated
    • For homogeneously sized communities, the problem of nonunit diagonal entries can be avoided if we require i ≠ j in the summation defining Q. However, for heterogeneously sized community, the bias of the naive approach cannot be eliminated.
  • 48
    • 84937677269 scopus 로고    scopus 로고
    • http://www.lorentz.leidenuniv.nl/~garlaschelli/.
  • 49
    • 84937684030 scopus 로고    scopus 로고
    • M. MacMahon, http://www.mathworks.com/matlabcentral/fileexchange/49011.
    • MacMahon, M.1
  • 50
    • 33746227724 scopus 로고    scopus 로고
    • Statistical Mechanics of Community Detection
    • J. Reichardt and S. Bornholdt, Statistical Mechanics of Community Detection, Phys. Rev. E 74, 016110 (2006).
    • (2006) Phys. Rev. E , vol.74
    • Reichardt, J.1    Bornholdt, S.2
  • 52
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and Community Structure in Networks
    • M. E. J. Newman, Modularity and Community Structure in Networks, Proc. Natl. Acad. Sci. USA 103, 8577 (2006).
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103
    • Newman, M.E.J.1
  • 53
    • 38549147867 scopus 로고
    • Common Risk Factors in the Returns on Stocks and Bonds
    • E. F. Fama and K. R. French, Common Risk Factors in the Returns on Stocks and Bonds, J. Financ. Econ. 33, 3 (1993).
    • (1993) J. Financ. Econ. , vol.33
    • Fama, E.F.1    French, K.R.2
  • 54
    • 0013413658 scopus 로고    scopus 로고
    • Multifactor Explanations of Asset Pricing Anomalies
    • E. F. Fama and K. R. French, Multifactor Explanations of Asset Pricing Anomalies, J. Finance 51, 55 (1996).
    • (1996) J. Finance , vol.51
    • Fama, E.F.1    French, K.R.2
  • 55
    • 0002716956 scopus 로고
    • Asset Allocation: Management Style and Performance Measurement
    • W. F. Sharpe, Asset Allocation: Management Style and Performance Measurement, J. Portfolio Management 18, 7 (1992).
    • (1992) J. Portfolio Management , vol.18
    • Sharpe, W.F.1
  • 56
    • 33947156744 scopus 로고    scopus 로고
    • Comparing Clusterings, An Information Based Distance
    • M. Meila, Comparing Clusterings, An Information Based Distance, J. Multivariate Anal. 98, 873 (2007).
    • (2007) J. Multivariate Anal. , vol.98
    • Meila, M.1
  • 57
    • 9444274777 scopus 로고    scopus 로고
    • Comparing Clusterings by the Variation of Information
    • M. Meila, Comparing Clusterings by the Variation of Information, Learning Theory Kernel Machines 2777, 173 (2003).
    • (2003) Learning Theory Kernel Machines , vol.2777
    • Meila, M.1
  • 58
    • 84937713470 scopus 로고    scopus 로고
    • Standard & Poor's developed what is known as the Global Industry Classification Standard as an industry taxonomy, for use by the financial sector. All stocks in the three indexes we work with are classified using this single taxonomy
    • Standard & Poor's developed what is known as the Global Industry Classification Standard as an industry taxonomy, for use by the financial sector. All stocks in the three indexes we work with are classified using this single taxonomy.
  • 59
    • 84937678454 scopus 로고    scopus 로고
    • http://www.standardandpoors.com/products-services/GICS/en/us.
  • 60
    • 28844451531 scopus 로고    scopus 로고
    • Systematic Analysis of Group Identification in Stock Markets
    • D. H. Kim and H. Jeong, Systematic Analysis of Group Identification in Stock Markets, Phys. Rev. E 72, 046133 (2005).
    • (2005) Phys. Rev. E , vol.72
    • Kim, D.H.1    Jeong, H.2
  • 61
    • 35649001501 scopus 로고    scopus 로고
    • Collective Behavior of Stock Price Movements in an Emerging Market
    • R. K. Pan and S. Sinha, Collective Behavior of Stock Price Movements in an Emerging Market, Phys. Rev. E 76, 046116 (2007).
    • (2007) Phys. Rev. E , vol.76
    • Pan, R.K.1    Sinha, S.2
  • 62
    • 0001165055 scopus 로고
    • Frequency Distribution of the Values of the Correlation Coefficients in Samples from an Indefinitely Large Population
    • R. A. Fisher, Frequency Distribution of the Values of the Correlation Coefficients in Samples from an Indefinitely Large Population, Biometrika 10, 507 (1915).
    • (1915) Biometrika , vol.10
    • Fisher, R.A.1
  • 65
    • 84944833166 scopus 로고
    • Models of Stock Returns-A comparison
    • S. J. Kon, Models of Stock Returns-A comparison, J. Finance 39, 147 (1984).
    • (1984) J. Finance , vol.39
    • Kon, S.J.1
  • 66
    • 85008848771 scopus 로고    scopus 로고
    • Empirical Properties of Asset Returns; Stylized Facts and Statistical Issues
    • R. Cont, Empirical Properties of Asset Returns; Stylized Facts and Statistical Issues, Quant. Finance 1, 223 (2001).
    • (2001) Quant. Finance , vol.1
    • Cont, R.1
  • 68
    • 84995186518 scopus 로고
    • Portfolio Selection
    • H. M. Markowitz, Portfolio Selection, J. Finance 7, 77 (1952).
    • (1952) J. Finance , vol.7
    • Markowitz, H.M.1
  • 71
    • 84937699270 scopus 로고    scopus 로고
    • The GICS hierarchy follows the form of "Sector"\"Industry Group"\"Industry," and so the examples in this section will follow the same form, e.g., "Information Technology"\"Software & Services"\"Software." However, since our discussion will predominantly focus on similarities at the Industry level, for brevity we will often omit the full GICS label. In such cases, we will delineate this using italics, e.g., Software in the example above
    • The GICS hierarchy follows the form of "Sector"\"Industry Group"\"Industry," and so the examples in this section will follow the same form, e.g., "Information Technology"\"Software & Services"\"Software." However, since our discussion will predominantly focus on similarities at the Industry level, for brevity we will often omit the full GICS label. In such cases, we will delineate this using italics, e.g., Software in the example above.
  • 72
    • 77951138987 scopus 로고    scopus 로고
    • Performance of Modularity Maximization in Practical Contexts
    • B. H. Good, Y. de Montjoye, and A. Clauset, Performance of Modularity Maximization in Practical Contexts, Phys. Rev. E 81, 046106 (2010).
    • (2010) Phys. Rev. E , vol.81
    • Good, B.H.1    de Montjoye, Y.2    Clauset, A.3
  • 73
    • 68949120793 scopus 로고    scopus 로고
    • Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations
    • P. Ronhovde and Z. Nussinov, Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations, Phys. Rev. E 80, 016109 (2009).
    • (2009) Phys. Rev. E , vol.80
    • Ronhovde, P.1    Nussinov, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.