-
1
-
-
84870551218
-
Advanced control architectures for intelligent microgrids, part I: decentralized and hierarchical control
-
Guerrero J.M., Chandorkar M., Lee T.L., Loh P.C. Advanced control architectures for intelligent microgrids, part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 2013, 60(4):1254-1262.
-
(2013)
IEEE Trans. Ind. Electron.
, vol.60
, Issue.4
, pp. 1254-1262
-
-
Guerrero, J.M.1
Chandorkar, M.2
Lee, T.L.3
Loh, P.C.4
-
2
-
-
84884863264
-
An introduction to the special issue on advanced control methods: theory and application
-
Pekař L., Neri F. An introduction to the special issue on advanced control methods: theory and application. WSEAS Transactions on Systems 2013, 12(6):301-303.
-
(2013)
WSEAS Transactions on Systems
, vol.12
, Issue.6
, pp. 301-303
-
-
Pekař, L.1
Neri, F.2
-
3
-
-
85057632883
-
Dynamic simulation for verification of gains with the implementation of advanced process control for a nickel sulphide ore beneficiation plant[C]
-
Nogueira A., Vieira M., Martins M.A. Dynamic simulation for verification of gains with the implementation of advanced process control for a nickel sulphide ore beneficiation plant[C]. Automation in Mining, Mineral and Metal Processing 2013, 15(1):196-201.
-
(2013)
Automation in Mining, Mineral and Metal Processing
, vol.15
, Issue.1
, pp. 196-201
-
-
Nogueira, A.1
Vieira, M.2
Martins, M.A.3
-
4
-
-
54149115873
-
Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications
-
Uzunoglu M., Onar O.C., Alam M.S. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renew. Energy 2009, 34(3):509-520.
-
(2009)
Renew. Energy
, vol.34
, Issue.3
, pp. 509-520
-
-
Uzunoglu, M.1
Onar, O.C.2
Alam, M.S.3
-
5
-
-
0037954487
-
Modeling, control and implementation of three-phase PWM converters
-
Ye Y., Kazerani M., Quintana V.H. Modeling, control and implementation of three-phase PWM converters. IEEE Trans. Power Electron. 2003, 18(3):857-864.
-
(2003)
IEEE Trans. Power Electron.
, vol.18
, Issue.3
, pp. 857-864
-
-
Ye, Y.1
Kazerani, M.2
Quintana, V.H.3
-
7
-
-
57249097849
-
Dealing with irregular data in soft sensors: Bayesian method and comparative study
-
Khatibisepehr S., Huang B.D. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47(22):8713.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, Issue.22
, pp. 8713
-
-
Khatibisepehr, S.1
Huang, B.D.2
-
8
-
-
84899481774
-
A review on basic data-driven approaches for industrial process monitoring
-
Yin S., Ding S.X., Xie X., Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61(11):6418-6428.
-
(2014)
IEEE Trans. Ind. Electron.
, vol.61
, Issue.11
, pp. 6418-6428
-
-
Yin, S.1
Ding, S.X.2
Xie, X.3
Luo, H.4
-
9
-
-
84869508491
-
Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods
-
MacGregor J., Cinar A. Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Comput. Chem. Eng. 2012, 47:111-120.
-
(2012)
Comput. Chem. Eng.
, vol.47
, pp. 111-120
-
-
MacGregor, J.1
Cinar, A.2
-
10
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
11
-
-
0034661658
-
Soft sensors development for on-line bioreactor state estimation
-
Assis A.J., Maciel F.R. Soft sensors development for on-line bioreactor state estimation. Comput. Chem. Eng. 2000, 24(2):1099-1103.
-
(2000)
Comput. Chem. Eng.
, vol.24
, Issue.2
, pp. 1099-1103
-
-
Assis, A.J.1
Maciel, F.R.2
-
12
-
-
70350675244
-
Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution
-
Singh K.P., Ojha P., Malik A., Jain G. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemom. Intell. Lab. Syst. 2009, 99(2):150-160.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.99
, Issue.2
, pp. 150-160
-
-
Singh, K.P.1
Ojha, P.2
Malik, A.3
Jain, G.4
-
13
-
-
67349261950
-
A comparison of different methods to estimate prediction uncertainty using Partial Least Squares (PLS): a practitioner's perspective
-
Zhang L., Garcia-Munoz S. A comparison of different methods to estimate prediction uncertainty using Partial Least Squares (PLS): a practitioner's perspective. Chemom. Intell. Lab. Syst. 2009, 97(2):152-158.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.97
, Issue.2
, pp. 152-158
-
-
Zhang, L.1
Garcia-Munoz, S.2
-
14
-
-
84926318519
-
A data-attribute-space-oriented double parallel (DASODP) structure for enhancing extreme learning machine: applications to regression datasets
-
He Y.L., Geng Z.Q., Zhu Q.X. A data-attribute-space-oriented double parallel (DASODP) structure for enhancing extreme learning machine: applications to regression datasets. Eng. Appl. Artif. Intell. 2015, 41:65-74.
-
(2015)
Eng. Appl. Artif. Intell.
, vol.41
, pp. 65-74
-
-
He, Y.L.1
Geng, Z.Q.2
Zhu, Q.X.3
-
15
-
-
0030158117
-
A neural network model for prediction of phase equilibria in aqueous two-phase extraction
-
Kann P., Lee C.J. A neural network model for prediction of phase equilibria in aqueous two-phase extraction. Ind. Eng. Chem. Res. 1996, 35(6):2015-2023.
-
(1996)
Ind. Eng. Chem. Res.
, vol.35
, Issue.6
, pp. 2015-2023
-
-
Kann, P.1
Lee, C.J.2
-
16
-
-
84864205948
-
Estimation of thermal conductivity of ionic liquids using a perceptron neural network
-
Hezave A.Z., Raeissi S., Lashkarbolooki M. Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Ind. Eng. Chem. Res. 2012, 51(29):9886-9893.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, Issue.29
, pp. 9886-9893
-
-
Hezave, A.Z.1
Raeissi, S.2
Lashkarbolooki, M.3
-
17
-
-
84927654898
-
Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network
-
He Y.L., Xu Y., Geng Z.Q., Zhu Q.X. Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network. Chin. J. Chem. Eng. 2015, 23(1):138-145.
-
(2015)
Chin. J. Chem. Eng.
, vol.23
, Issue.1
, pp. 138-145
-
-
He, Y.L.1
Xu, Y.2
Geng, Z.Q.3
Zhu, Q.X.4
-
18
-
-
84893685895
-
A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise
-
He Y.L., Xu Y., Geng Z.Q., Zhu Q.X. A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise. Neurocomputing 2014, 128:407-414.
-
(2014)
Neurocomputing
, vol.128
, pp. 407-414
-
-
He, Y.L.1
Xu, Y.2
Geng, Z.Q.3
Zhu, Q.X.4
-
20
-
-
84907817958
-
Spectroscopy-based food classification with extreme learning machine
-
Zheng W., Fu X., Ying Y. Spectroscopy-based food classification with extreme learning machine. Chemom. Intell. Lab. Syst. 2014, 139:42-47.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.139
, pp. 42-47
-
-
Zheng, W.1
Fu, X.2
Ying, Y.3
-
22
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
23
-
-
84952942214
-
ELM based dynamic modeling for online prediction of molten iron silicon content in blast furnace
-
Springer International Publishing
-
Zhou P., Yuan M., Wang H. ELM based dynamic modeling for online prediction of molten iron silicon content in blast furnace. Proceedings of ELM-2014 2015, vol. 2:267-277. Springer International Publishing.
-
(2015)
Proceedings of ELM-2014
, vol.2
, pp. 267-277
-
-
Zhou, P.1
Yuan, M.2
Wang, H.3
-
24
-
-
39449107168
-
Prediction of melting points of organic compounds using extreme learning machines
-
Bhat A.U., Merchant S.S., Bhagwat S.S. Prediction of melting points of organic compounds using extreme learning machines. Ind. Eng. Chem. Res. 2008, 47(3):920-925.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, Issue.3
, pp. 920-925
-
-
Bhat, A.U.1
Merchant, S.S.2
Bhagwat, S.S.3
-
25
-
-
84893691285
-
Discrete-time hypersonic flight control based on extreme learning machine
-
Xu B., Pan Y., Wang D., Sun F.C. Discrete-time hypersonic flight control based on extreme learning machine. Neurocomputing 2014, 128:232-241.
-
(2014)
Neurocomputing
, vol.128
, pp. 232-241
-
-
Xu, B.1
Pan, Y.2
Wang, D.3
Sun, F.C.4
-
26
-
-
0027662338
-
Pruning algorithms: a survey
-
Reed R. Pruning algorithms: a survey. IEEE Trans. Neural Netw. 1989, 4(5):740-747.
-
(1989)
IEEE Trans. Neural Netw.
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
27
-
-
84874018050
-
Estimation of effluent quality using PLS-based extreme learning machines
-
Zhao L.J., Wang D.H., Chai T.Y. Estimation of effluent quality using PLS-based extreme learning machines. Neural Comput. & Applic. 2013, 22(3-4):509-519.
-
(2013)
Neural Comput. & Applic.
, vol.22
, Issue.3-4
, pp. 509-519
-
-
Zhao, L.J.1
Wang, D.H.2
Chai, T.Y.3
-
29
-
-
0037806811
-
The boosting approach to machine learning: an overview
-
Springer, New York
-
Schapire R.E. The boosting approach to machine learning: an overview. Nonlinear Estimation and Classification 2003, 149-171. Springer, New York.
-
(2003)
Nonlinear Estimation and Classification
, pp. 149-171
-
-
Schapire, R.E.1
-
30
-
-
4944242989
-
An ensemble machine learning approach for the prediction of all-alpha membrane proteins
-
Martelli P.L., Fariselli P., Casadio R. An ensemble machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics 2003, 19(1):205-211.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 205-211
-
-
Martelli, P.L.1
Fariselli, P.2
Casadio, R.3
-
31
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
33
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
Niu D.P., Wang F.L., Zhang L.L., He D.K., Jia M.X. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105(1):125-130.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, Issue.1
, pp. 125-130
-
-
Niu, D.P.1
Wang, F.L.2
Zhang, L.L.3
He, D.K.4
Jia, M.X.5
-
37
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Krogh A., Vedelsby J. Neural network ensembles, cross validation, and active learning. Advances in Neural Information Processing Systems 1995, vol. 7:231-238.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
38
-
-
84947841031
-
Applications of multivariate statistical methods to process monitoring and controller design
-
Plovoso M.J., Kosanovich K.A. Applications of multivariate statistical methods to process monitoring and controller design. Int. J. Control. 1994, 59(3):743-765.
-
(1994)
Int. J. Control.
, vol.59
, Issue.3
, pp. 743-765
-
-
Plovoso, M.J.1
Kosanovich, K.A.2
-
39
-
-
84859698661
-
A PLS-based statistical approach for fault detection and isolation of robotic manipulators
-
Muradore R., Fiorini P. A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 2012, 59(8):3167-3175.
-
(2012)
IEEE Trans. Ind. Electron.
, vol.59
, Issue.8
, pp. 3167-3175
-
-
Muradore, R.1
Fiorini, P.2
-
40
-
-
0010040681
-
Multi-way principal components and PLS analysis
-
Wold S., Geladi P., Esbensen K., Ohman J. Multi-way principal components and PLS analysis. J. Chemom. 1987, 1(1):41-56.
-
(1987)
J. Chemom.
, vol.1
, Issue.1
, pp. 41-56
-
-
Wold, S.1
Geladi, P.2
Esbensen, K.3
Ohman, J.4
-
41
-
-
84941963166
-
Data driven soft sensor development for complex chemical processes using extreme learning machine
-
He Y.L., Geng Z.Q., Zhu Q.X. Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des. 2015, 102:1-11.
-
(2015)
Chem. Eng. Res. Des.
, vol.102
, pp. 1-11
-
-
He, Y.L.1
Geng, Z.Q.2
Zhu, Q.X.3
-
42
-
-
0037841526
-
Cross-validation as the objective function for variable-selection techniques
-
Baumann K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 2003, 22(6):395-406.
-
(2003)
TrAC Trends Anal. Chem.
, vol.22
, Issue.6
, pp. 395-406
-
-
Baumann, K.1
|