메뉴 건너뛰기




Volumn 151, Issue , 2016, Pages 78-88

Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square

Author keywords

Bagging; Extreme learning machine; Partial least square; Purified Terephthalic Acid Process; Soft sensor; Tennessee Eastman process

Indexed keywords

ACCURACY; ANALYTIC METHOD; ARTICLE; ARTIFICIAL NEURAL NETWORK; CONTROLLED STUDY; INFORMATION PROCESSING; LEARNING ALGORITHM; MACHINE LEARNING; MATHEMATICAL ANALYSIS; MATHEMATICAL MODEL; MEMBRANE STRUCTURE; NONLINEAR SYSTEM; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PURIFICATION; PURIFIED TEREPHTHALIC ACID PROCESS; SIMULATION; TENNESSEE EASTMAN PROCESS; VALIDATION PROCESS;

EID: 84952926812     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.12.010     Document Type: Article
Times cited : (34)

References (42)
  • 1
    • 84870551218 scopus 로고    scopus 로고
    • Advanced control architectures for intelligent microgrids, part I: decentralized and hierarchical control
    • Guerrero J.M., Chandorkar M., Lee T.L., Loh P.C. Advanced control architectures for intelligent microgrids, part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 2013, 60(4):1254-1262.
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , Issue.4 , pp. 1254-1262
    • Guerrero, J.M.1    Chandorkar, M.2    Lee, T.L.3    Loh, P.C.4
  • 2
    • 84884863264 scopus 로고    scopus 로고
    • An introduction to the special issue on advanced control methods: theory and application
    • Pekař L., Neri F. An introduction to the special issue on advanced control methods: theory and application. WSEAS Transactions on Systems 2013, 12(6):301-303.
    • (2013) WSEAS Transactions on Systems , vol.12 , Issue.6 , pp. 301-303
    • Pekař, L.1    Neri, F.2
  • 3
    • 85057632883 scopus 로고    scopus 로고
    • Dynamic simulation for verification of gains with the implementation of advanced process control for a nickel sulphide ore beneficiation plant[C]
    • Nogueira A., Vieira M., Martins M.A. Dynamic simulation for verification of gains with the implementation of advanced process control for a nickel sulphide ore beneficiation plant[C]. Automation in Mining, Mineral and Metal Processing 2013, 15(1):196-201.
    • (2013) Automation in Mining, Mineral and Metal Processing , vol.15 , Issue.1 , pp. 196-201
    • Nogueira, A.1    Vieira, M.2    Martins, M.A.3
  • 4
    • 54149115873 scopus 로고    scopus 로고
    • Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications
    • Uzunoglu M., Onar O.C., Alam M.S. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renew. Energy 2009, 34(3):509-520.
    • (2009) Renew. Energy , vol.34 , Issue.3 , pp. 509-520
    • Uzunoglu, M.1    Onar, O.C.2    Alam, M.S.3
  • 5
    • 0037954487 scopus 로고    scopus 로고
    • Modeling, control and implementation of three-phase PWM converters
    • Ye Y., Kazerani M., Quintana V.H. Modeling, control and implementation of three-phase PWM converters. IEEE Trans. Power Electron. 2003, 18(3):857-864.
    • (2003) IEEE Trans. Power Electron. , vol.18 , Issue.3 , pp. 857-864
    • Ye, Y.1    Kazerani, M.2    Quintana, V.H.3
  • 7
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khatibisepehr S., Huang B.D. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 2008, 47(22):8713.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , Issue.22 , pp. 8713
    • Khatibisepehr, S.1    Huang, B.D.2
  • 8
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic data-driven approaches for industrial process monitoring
    • Yin S., Ding S.X., Xie X., Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61(11):6418-6428.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.X.2    Xie, X.3    Luo, H.4
  • 9
    • 84869508491 scopus 로고    scopus 로고
    • Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods
    • MacGregor J., Cinar A. Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Comput. Chem. Eng. 2012, 47:111-120.
    • (2012) Comput. Chem. Eng. , vol.47 , pp. 111-120
    • MacGregor, J.1    Cinar, A.2
  • 10
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 11
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • Assis A.J., Maciel F.R. Soft sensors development for on-line bioreactor state estimation. Comput. Chem. Eng. 2000, 24(2):1099-1103.
    • (2000) Comput. Chem. Eng. , vol.24 , Issue.2 , pp. 1099-1103
    • Assis, A.J.1    Maciel, F.R.2
  • 12
    • 70350675244 scopus 로고    scopus 로고
    • Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution
    • Singh K.P., Ojha P., Malik A., Jain G. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemom. Intell. Lab. Syst. 2009, 99(2):150-160.
    • (2009) Chemom. Intell. Lab. Syst. , vol.99 , Issue.2 , pp. 150-160
    • Singh, K.P.1    Ojha, P.2    Malik, A.3    Jain, G.4
  • 13
    • 67349261950 scopus 로고    scopus 로고
    • A comparison of different methods to estimate prediction uncertainty using Partial Least Squares (PLS): a practitioner's perspective
    • Zhang L., Garcia-Munoz S. A comparison of different methods to estimate prediction uncertainty using Partial Least Squares (PLS): a practitioner's perspective. Chemom. Intell. Lab. Syst. 2009, 97(2):152-158.
    • (2009) Chemom. Intell. Lab. Syst. , vol.97 , Issue.2 , pp. 152-158
    • Zhang, L.1    Garcia-Munoz, S.2
  • 14
    • 84926318519 scopus 로고    scopus 로고
    • A data-attribute-space-oriented double parallel (DASODP) structure for enhancing extreme learning machine: applications to regression datasets
    • He Y.L., Geng Z.Q., Zhu Q.X. A data-attribute-space-oriented double parallel (DASODP) structure for enhancing extreme learning machine: applications to regression datasets. Eng. Appl. Artif. Intell. 2015, 41:65-74.
    • (2015) Eng. Appl. Artif. Intell. , vol.41 , pp. 65-74
    • He, Y.L.1    Geng, Z.Q.2    Zhu, Q.X.3
  • 15
    • 0030158117 scopus 로고    scopus 로고
    • A neural network model for prediction of phase equilibria in aqueous two-phase extraction
    • Kann P., Lee C.J. A neural network model for prediction of phase equilibria in aqueous two-phase extraction. Ind. Eng. Chem. Res. 1996, 35(6):2015-2023.
    • (1996) Ind. Eng. Chem. Res. , vol.35 , Issue.6 , pp. 2015-2023
    • Kann, P.1    Lee, C.J.2
  • 16
    • 84864205948 scopus 로고    scopus 로고
    • Estimation of thermal conductivity of ionic liquids using a perceptron neural network
    • Hezave A.Z., Raeissi S., Lashkarbolooki M. Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Ind. Eng. Chem. Res. 2012, 51(29):9886-9893.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.29 , pp. 9886-9893
    • Hezave, A.Z.1    Raeissi, S.2    Lashkarbolooki, M.3
  • 17
    • 84927654898 scopus 로고    scopus 로고
    • Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network
    • He Y.L., Xu Y., Geng Z.Q., Zhu Q.X. Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network. Chin. J. Chem. Eng. 2015, 23(1):138-145.
    • (2015) Chin. J. Chem. Eng. , vol.23 , Issue.1 , pp. 138-145
    • He, Y.L.1    Xu, Y.2    Geng, Z.Q.3    Zhu, Q.X.4
  • 18
    • 84893685895 scopus 로고    scopus 로고
    • A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise
    • He Y.L., Xu Y., Geng Z.Q., Zhu Q.X. A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise. Neurocomputing 2014, 128:407-414.
    • (2014) Neurocomputing , vol.128 , pp. 407-414
    • He, Y.L.1    Xu, Y.2    Geng, Z.Q.3    Zhu, Q.X.4
  • 20
    • 84907817958 scopus 로고    scopus 로고
    • Spectroscopy-based food classification with extreme learning machine
    • Zheng W., Fu X., Ying Y. Spectroscopy-based food classification with extreme learning machine. Chemom. Intell. Lab. Syst. 2014, 139:42-47.
    • (2014) Chemom. Intell. Lab. Syst. , vol.139 , pp. 42-47
    • Zheng, W.1    Fu, X.2    Ying, Y.3
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 23
    • 84952942214 scopus 로고    scopus 로고
    • ELM based dynamic modeling for online prediction of molten iron silicon content in blast furnace
    • Springer International Publishing
    • Zhou P., Yuan M., Wang H. ELM based dynamic modeling for online prediction of molten iron silicon content in blast furnace. Proceedings of ELM-2014 2015, vol. 2:267-277. Springer International Publishing.
    • (2015) Proceedings of ELM-2014 , vol.2 , pp. 267-277
    • Zhou, P.1    Yuan, M.2    Wang, H.3
  • 24
    • 39449107168 scopus 로고    scopus 로고
    • Prediction of melting points of organic compounds using extreme learning machines
    • Bhat A.U., Merchant S.S., Bhagwat S.S. Prediction of melting points of organic compounds using extreme learning machines. Ind. Eng. Chem. Res. 2008, 47(3):920-925.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , Issue.3 , pp. 920-925
    • Bhat, A.U.1    Merchant, S.S.2    Bhagwat, S.S.3
  • 25
    • 84893691285 scopus 로고    scopus 로고
    • Discrete-time hypersonic flight control based on extreme learning machine
    • Xu B., Pan Y., Wang D., Sun F.C. Discrete-time hypersonic flight control based on extreme learning machine. Neurocomputing 2014, 128:232-241.
    • (2014) Neurocomputing , vol.128 , pp. 232-241
    • Xu, B.1    Pan, Y.2    Wang, D.3    Sun, F.C.4
  • 26
    • 0027662338 scopus 로고
    • Pruning algorithms: a survey
    • Reed R. Pruning algorithms: a survey. IEEE Trans. Neural Netw. 1989, 4(5):740-747.
    • (1989) IEEE Trans. Neural Netw. , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 27
    • 84874018050 scopus 로고    scopus 로고
    • Estimation of effluent quality using PLS-based extreme learning machines
    • Zhao L.J., Wang D.H., Chai T.Y. Estimation of effluent quality using PLS-based extreme learning machines. Neural Comput. & Applic. 2013, 22(3-4):509-519.
    • (2013) Neural Comput. & Applic. , vol.22 , Issue.3-4 , pp. 509-519
    • Zhao, L.J.1    Wang, D.H.2    Chai, T.Y.3
  • 29
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: an overview
    • Springer, New York
    • Schapire R.E. The boosting approach to machine learning: an overview. Nonlinear Estimation and Classification 2003, 149-171. Springer, New York.
    • (2003) Nonlinear Estimation and Classification , pp. 149-171
    • Schapire, R.E.1
  • 30
    • 4944242989 scopus 로고    scopus 로고
    • An ensemble machine learning approach for the prediction of all-alpha membrane proteins
    • Martelli P.L., Fariselli P., Casadio R. An ensemble machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics 2003, 19(1):205-211.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 205-211
    • Martelli, P.L.1    Fariselli, P.2    Casadio, R.3
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 33
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • Niu D.P., Wang F.L., Zhang L.L., He D.K., Jia M.X. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 2011, 105(1):125-130.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , Issue.1 , pp. 125-130
    • Niu, D.P.1    Wang, F.L.2    Zhang, L.L.3    He, D.K.4    Jia, M.X.5
  • 38
    • 84947841031 scopus 로고
    • Applications of multivariate statistical methods to process monitoring and controller design
    • Plovoso M.J., Kosanovich K.A. Applications of multivariate statistical methods to process monitoring and controller design. Int. J. Control. 1994, 59(3):743-765.
    • (1994) Int. J. Control. , vol.59 , Issue.3 , pp. 743-765
    • Plovoso, M.J.1    Kosanovich, K.A.2
  • 39
    • 84859698661 scopus 로고    scopus 로고
    • A PLS-based statistical approach for fault detection and isolation of robotic manipulators
    • Muradore R., Fiorini P. A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 2012, 59(8):3167-3175.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , Issue.8 , pp. 3167-3175
    • Muradore, R.1    Fiorini, P.2
  • 40
    • 0010040681 scopus 로고
    • Multi-way principal components and PLS analysis
    • Wold S., Geladi P., Esbensen K., Ohman J. Multi-way principal components and PLS analysis. J. Chemom. 1987, 1(1):41-56.
    • (1987) J. Chemom. , vol.1 , Issue.1 , pp. 41-56
    • Wold, S.1    Geladi, P.2    Esbensen, K.3    Ohman, J.4
  • 41
    • 84941963166 scopus 로고    scopus 로고
    • Data driven soft sensor development for complex chemical processes using extreme learning machine
    • He Y.L., Geng Z.Q., Zhu Q.X. Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des. 2015, 102:1-11.
    • (2015) Chem. Eng. Res. Des. , vol.102 , pp. 1-11
    • He, Y.L.1    Geng, Z.Q.2    Zhu, Q.X.3
  • 42
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable-selection techniques
    • Baumann K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 2003, 22(6):395-406.
    • (2003) TrAC Trends Anal. Chem. , vol.22 , Issue.6 , pp. 395-406
    • Baumann, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.