메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 42-47

Spectroscopy-based food classification with extreme learning machine

Author keywords

Classification; Extreme learning machine; Food; Spectroscopy

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BACK PROPAGATION; CHEMOMETRICS; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; DISCRIMINANT ANALYSIS; EXTREME LEARNING MACHINE; FOOD ANALYSIS; FOOD CLASSIFICATION; INFRARED SPECTROSCOPY; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; MEASUREMENT ACCURACY; PARTIAL LEAST SQUARES REGRESSION; REGRESSION ANALYSIS; SPECTROSCOPY; SUPPORT VECTOR MACHINE;

EID: 84907817958     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.09.015     Document Type: Article
Times cited : (82)

References (35)
  • 1
    • 34548249602 scopus 로고    scopus 로고
    • Study of the feasibility of distinguishing cigarettes of different brands using an Adaboost algorithm and near-infrared spectroscopy
    • Tan C., Li M., Qin X. Study of the feasibility of distinguishing cigarettes of different brands using an Adaboost algorithm and near-infrared spectroscopy. Anal. Bioanal. Chem. 2007, 389:667-674.
    • (2007) Anal. Bioanal. Chem. , vol.389 , pp. 667-674
    • Tan, C.1    Li, M.2    Qin, X.3
  • 2
    • 79959949909 scopus 로고    scopus 로고
    • Multivariate classification of rice wines according to ageing time and brand based on amino acid profiles
    • Shen F., Ying Y., Li B., Zheng Y., Zhuge Q. Multivariate classification of rice wines according to ageing time and brand based on amino acid profiles. Food Chem. 2011, 129:565-569.
    • (2011) Food Chem. , vol.129 , pp. 565-569
    • Shen, F.1    Ying, Y.2    Li, B.3    Zheng, Y.4    Zhuge, Q.5
  • 3
    • 0000928446 scopus 로고    scopus 로고
    • Near-and mid-infrared spectroscopies in food authentication: coffee varietal identification
    • Downey G., Briandet R., Wilson R.H., Kemsley E.K. Near-and mid-infrared spectroscopies in food authentication: coffee varietal identification. J. Agric. Food Chem. 1997, 45:4357-4361.
    • (1997) J. Agric. Food Chem. , vol.45 , pp. 4357-4361
    • Downey, G.1    Briandet, R.2    Wilson, R.H.3    Kemsley, E.K.4
  • 4
    • 0141706543 scopus 로고    scopus 로고
    • FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils
    • Tapp H.S., Defernez M., Kemsley E.K. FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J. Agric. Food Chem. 2003, 51:6110-6115.
    • (2003) J. Agric. Food Chem. , vol.51 , pp. 6110-6115
    • Tapp, H.S.1    Defernez, M.2    Kemsley, E.K.3
  • 5
    • 4544357882 scopus 로고    scopus 로고
    • Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions
    • Chen J., Arnold M.A., Small G.W. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions. Anal. Chem. 2004, 76:5405-5413.
    • (2004) Anal. Chem. , vol.76 , pp. 5405-5413
    • Chen, J.1    Arnold, M.A.2    Small, G.W.3
  • 6
    • 33846387184 scopus 로고    scopus 로고
    • Theory and application of near infrared reflectance spectroscopy in determination of food quality
    • Cen H., He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18:72-83.
    • (2007) Trends Food Sci. Technol. , vol.18 , pp. 72-83
    • Cen, H.1    He, Y.2
  • 7
    • 70350574843 scopus 로고    scopus 로고
    • Comparison of chemometric methods for brand classification of cigarettes by near-infrared spectroscopy
    • Tan C., Qin X., Li M. Comparison of chemometric methods for brand classification of cigarettes by near-infrared spectroscopy. Vib. Spectrosc. 2009, 51:276-282.
    • (2009) Vib. Spectrosc. , vol.51 , pp. 276-282
    • Tan, C.1    Qin, X.2    Li, M.3
  • 8
    • 84856430038 scopus 로고    scopus 로고
    • Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: a case study
    • Bevilacqua M., Bucci R., Magri A.D., Magri A.L., Marini F. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: a case study. Anal. Chim. Acta. 2012, 717:39-51.
    • (2012) Anal. Chim. Acta. , vol.717 , pp. 39-51
    • Bevilacqua, M.1    Bucci, R.2    Magri, A.D.3    Magri, A.L.4    Marini, F.5
  • 11
    • 84870979451 scopus 로고    scopus 로고
    • Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques
    • Palacios-Morillo A., Alcazar A., De Pablos F., Jurado J.M. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques. Spectrochim. Acta A 2013, 103:79-83.
    • (2013) Spectrochim. Acta A , vol.103 , pp. 79-83
    • Palacios-Morillo, A.1    Alcazar, A.2    De Pablos, F.3    Jurado, J.M.4
  • 12
    • 33646830788 scopus 로고    scopus 로고
    • Qualitative identification of tea categories by near infrared spectroscopy and support vector machine
    • Zhao J., Chen Q., Huang X., Fang C. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. J. Pharmaceut. Biomed. 2006, 41:1198-1204.
    • (2006) J. Pharmaceut. Biomed. , vol.41 , pp. 1198-1204
    • Zhao, J.1    Chen, Q.2    Huang, X.3    Fang, C.4
  • 13
    • 34548317405 scopus 로고    scopus 로고
    • Classification of wines produced in specific regions by UV-visible spectroscopy combined with support vector machines
    • Acevedo F.J., Jiménez J., Maldonado S., Domínguez E., Narváez A. Classification of wines produced in specific regions by UV-visible spectroscopy combined with support vector machines. J. Agric. Food Chem. 2007, 55:6842-6849.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 6842-6849
    • Acevedo, F.J.1    Jiménez, J.2    Maldonado, S.3    Domínguez, E.4    Narváez, A.5
  • 14
    • 67349136419 scopus 로고    scopus 로고
    • Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics
    • Xie L., Ying Y., Ying T. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. J. Food Eng. 2009, 94:34-39.
    • (2009) J. Food Eng. , vol.94 , pp. 34-39
    • Xie, L.1    Ying, Y.2    Ying, T.3
  • 15
    • 0030932503 scopus 로고    scopus 로고
    • Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study
    • Al-Jowder O., Kemsley E., Wilson R. Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study. Food Chem. 1997, 59:195-201.
    • (1997) Food Chem. , vol.59 , pp. 195-201
    • Al-Jowder, O.1    Kemsley, E.2    Wilson, R.3
  • 16
    • 0031882308 scopus 로고    scopus 로고
    • Use of Fourier transform infrared spectroscopy and partial least squares regression for the detection of adulteration of strawberry purees
    • Holland J.K., Kemsley E.K., Wilson R.H. Use of Fourier transform infrared spectroscopy and partial least squares regression for the detection of adulteration of strawberry purees. J. Sci. Food Agric. 1998, 76:263-269.
    • (1998) J. Sci. Food Agric. , vol.76 , pp. 263-269
    • Holland, J.K.1    Kemsley, E.K.2    Wilson, R.H.3
  • 17
    • 75749121783 scopus 로고    scopus 로고
    • Variable-weighted least-squares support vector machine for multivariate spectral analysis
    • Zou H.-Y., Wu H.-L., Fu H.-Y., Tang L.-J., Xu L., Nie J.-F., Yu R.-Q. Variable-weighted least-squares support vector machine for multivariate spectral analysis. Talanta 2010, 80:1698-1701.
    • (2010) Talanta , vol.80 , pp. 1698-1701
    • Zou, H.-Y.1    Wu, H.-L.2    Fu, H.-Y.3    Tang, L.-J.4    Xu, L.5    Nie, J.-F.6    Yu, R.-Q.7
  • 19
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., De Smet F., Suykens J.A., De Moor B.L. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004, 20:3185-3195.
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.3    De Moor, B.L.4
  • 20
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural. Process. Lett. 1999, 9:293-300.
    • (1999) Neural. Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 21
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • Thissen U., Üstün B., Melssen W.J., Buydens L.M. Multivariate calibration with least-squares support vector machines. Anal. Chem. 2004, 76:3099-3105.
    • (2004) Anal. Chem. , vol.76 , pp. 3099-3105
    • Thissen, U.1    Üstün, B.2    Melssen, W.J.3    Buydens, L.M.4
  • 22
    • 33744935010 scopus 로고    scopus 로고
    • Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy
    • Kovalenko I.V., Rippke G.R., Hurburgh C.R. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54:3485-3491.
    • (2006) J. Agric. Food Chem. , vol.54 , pp. 3485-3491
    • Kovalenko, I.V.1    Rippke, G.R.2    Hurburgh, C.R.3
  • 23
    • 84893751868 scopus 로고    scopus 로고
    • Non-linear calibration models for near infrared spectroscopy
    • Ni W.D., Norgaard L., Morup M. Non-linear calibration models for near infrared spectroscopy. Anal. Chim. Acta. 2014, 813:1-14.
    • (2014) Anal. Chim. Acta. , vol.813 , pp. 1-14
    • Ni, W.D.1    Norgaard, L.2    Morup, M.3
  • 24
    • 2342655711 scopus 로고    scopus 로고
    • Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes
    • Chauchard F., Cogdill R., Roussel S., Roger J., Bellon-Maurel V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometr. Intell. Lab. Syst. 2004, 71:141-150.
    • (2004) Chemometr. Intell. Lab. Syst. , vol.71 , pp. 141-150
    • Chauchard, F.1    Cogdill, R.2    Roussel, S.3    Roger, J.4    Bellon-Maurel, V.5
  • 25
    • 33748938764 scopus 로고    scopus 로고
    • Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
    • Borin A., Ferrão M.F., Mello C., Maretto D.A., Poppi R.J. Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Anal. Chim. Acta. 2006, 579:25-32.
    • (2006) Anal. Chim. Acta. , vol.579 , pp. 25-32
    • Borin, A.1    Ferrão, M.F.2    Mello, C.3    Maretto, D.A.4    Poppi, R.J.5
  • 26
    • 38949118597 scopus 로고    scopus 로고
    • Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy
    • Yu H., Lin H., Xu H., Ying Y., Li B., Pan X. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. J. Agric. Food Chem. 2008, 56:307-313.
    • (2008) J. Agric. Food Chem. , vol.56 , pp. 307-313
    • Yu, H.1    Lin, H.2    Xu, H.3    Ying, Y.4    Li, B.5    Pan, X.6
  • 29
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 30
    • 84874022486 scopus 로고    scopus 로고
    • Text categorization based on regularization extreme learning machine
    • Zheng W., Qian Y., Lu H. Text categorization based on regularization extreme learning machine. Neural Comput. Appl. 2013, 22:447-456.
    • (2013) Neural Comput. Appl. , vol.22 , pp. 447-456
    • Zheng, W.1    Qian, Y.2    Lu, H.3
  • 31
    • 84893640041 scopus 로고    scopus 로고
    • Extreme learning machines for soybean classification in remote sensing hyperspectral images
    • Moreno R., Corona F., Lendasse A., Grana M., Galvao L.S. Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128:207-216.
    • (2014) Neurocomputing , vol.128 , pp. 207-216
    • Moreno, R.1    Corona, F.2    Lendasse, A.3    Grana, M.4    Galvao, L.S.5
  • 32
    • 84870784748 scopus 로고    scopus 로고
    • Combination of activation functions in extreme learning machines for multivariate calibration
    • Peng J.T., Li L.Q., Tang Y.Y. Combination of activation functions in extreme learning machines for multivariate calibration. Chemometr. Intell. Lab. Syst. 2013, 120:53-58.
    • (2013) Chemometr. Intell. Lab. Syst. , vol.120 , pp. 53-58
    • Peng, J.T.1    Li, L.Q.2    Tang, Y.Y.3
  • 33
    • 40849123845 scopus 로고    scopus 로고
    • An ensemble of Monte Carlo uninformative variable elimination for wavelength selection
    • Han Q.-J., Wu H.-L., Cai C.-B., Xu L., Yu R.-Q. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Anal. Chim. Acta. 2008, 612:121-125.
    • (2008) Anal. Chim. Acta. , vol.612 , pp. 121-125
    • Han, Q.-J.1    Wu, H.-L.2    Cai, C.-B.3    Xu, L.4    Yu, R.-Q.5
  • 35
    • 11944254534 scopus 로고
    • General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method
    • Gorry P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Anal. Chem. 1990, 62:570-573.
    • (1990) Anal. Chem. , vol.62 , pp. 570-573
    • Gorry, P.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.