메뉴 건너뛰기




Volumn 22, Issue 3-4, 2013, Pages 509-519

Estimation of effluent quality using PLS-based extreme learning machines

Author keywords

Extreme learning machine; Partial least square; Soft sensing; Wastewater treatment

Indexed keywords

EFFLUENT TREATMENT; EFFLUENTS; KNOWLEDGE ACQUISITION; LEAST SQUARES APPROXIMATIONS; MACHINE LEARNING; RECLAMATION; REGRESSION ANALYSIS; SEWAGE PUMPING PLANTS; WASTEWATER TREATMENT; WATER QUALITY; WATER TREATMENT PLANTS;

EID: 84874018050     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0837-1     Document Type: Article
Times cited : (18)

References (16)
  • 1
    • 33646717941 scopus 로고    scopus 로고
    • Instrumentation, control and automation in the water industry state-of-the-art and new challenges
    • Olsson G (2006) Instrumentation, control and automation in the water industry state-of-the-art and new challenges. Water Sci Technol 53(4-5): 1-16.
    • (2006) Water Sci Technol , vol.53 , Issue.4-5 , pp. 1-16
    • Olsson, G.1
  • 2
    • 0032317676 scopus 로고    scopus 로고
    • An online wastewater quality predication system based on a time-delay neural network
    • Zhu JB, Zurcher J, Rao M, Meng M (1998) An online wastewater quality predication system based on a time-delay neural network. Eng Appl Artif Intel 11(5): 747-758.
    • (1998) Eng Appl Artif Intel , vol.11 , Issue.5 , pp. 747-758
    • Zhu, J.B.1    Zurcher, J.2    Rao, M.3    Meng, M.4
  • 3
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • Lee DS, Jeon CO, Park JM, Chang KS (2002) Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnol Bioeng 78(6): 670-682.
    • (2002) Biotechnol Bioeng , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 4
    • 24944539826 scopus 로고    scopus 로고
    • Wastewater BOD forecasting model for optimal operation using robust time-delay neural network
    • Zhao LJ, Chai TY (2005) Wastewater BOD forecasting model for optimal operation using robust time-delay neural network. Lect Notes Comput Sc 3498: 1028-1033.
    • (2005) Lect Notes Comput Sc , vol.3498 , pp. 1028-1033
    • Zhao, L.J.1    Chai, T.Y.2
  • 5
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R, Sundararaj U, Shah S, Griend LV, Sun YJ (2006) Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant. Chem Eng Sci 61(19): 6372-6384.
    • (2006) Chem Eng Sci , vol.61 , Issue.19 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.J.5
  • 6
    • 0035266250 scopus 로고    scopus 로고
    • Construction of COD simulation model for activated sludge process by recursive fuzzy neural network
    • Tomida S, Hanai T, Honda H, Kobayashi T (2001) Construction of COD simulation model for activated sludge process by recursive fuzzy neural network. J. Chem Eng Jpn 34(3): 369-375.
    • (2001) J. Chem Eng Jpn , vol.34 , Issue.3 , pp. 369-375
    • Tomida, S.1    Hanai, T.2    Honda, H.3    Kobayashi, T.4
  • 8
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1-3): 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 10
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin SJ (1998) Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng 22(4-5): 503-514.
    • (1998) Comput Chem Eng , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 11
    • 0035965460 scopus 로고    scopus 로고
    • Some theoretical aspects of partial least squares regression
    • Helland IS (2001) Some theoretical aspects of partial least squares regression. Chemometr Intell Lab 58(2): 97-107.
    • (2001) Chemometr Intell Lab , vol.58 , Issue.2 , pp. 97-107
    • Helland, I.S.1
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4): 879-892.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 14
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression: a basic tool of chemometrics
    • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58(2): 109-130.
    • (2001) Chemometr Intell Lab , vol.58 , Issue.2 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 15
    • 11144325691 scopus 로고
    • Partial least squares regression: a tutorial
    • Geladi P, Kowalski B (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185: 1-17.
    • (1986) Anal Chim Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 16
    • 0033611717 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited: the quadratic PLS algorithm
    • Baffi G, Martin EB, Morris AJ (1999) Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Comput Chem Eng 23(3): 395-411.
    • (1999) Comput Chem Eng , vol.23 , Issue.3 , pp. 395-411
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.