메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 407-414

A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise

Author keywords

Auto associative neural network; Data attributes extension classification; Extreme learning machine; Matter element model; Single hidden layer feedforward neural networks

Indexed keywords

AUTOASSOCIATIVE NEURAL NETWORKS; EXTENSION CLASSIFICATIONS; EXTREME LEARNING MACHINE; HIERARCHICAL STRUCTURES; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; MACHINE LEARNING TECHNIQUES; MATTER-ELEMENT MODEL;

EID: 84893685895     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.024     Document Type: Article
Times cited : (37)

References (42)
  • 1
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Proceedings of the International Joint Conference on Neural Networks (IJCNN2004)
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN2004), vol. 2, 2004, pp. 985-990.
    • (2004) , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 2
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 4
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 2009, 20(8):1352-1357.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.B.2    Lin, Q.3    Gay, R.4
  • 5
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Networks 2003, 14(2):274-281.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 6
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Networks 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 7
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 8
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 9
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 10
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.B., Ding X.J., Zhou H.M. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74(1-3):155-163.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 155-163
    • Huang, G.B.1    Ding, X.J.2    Zhou, H.M.3
  • 13
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R., Huang G.B., Sundararajan N., Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2007, 4(3):485-495.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.4 , Issue.3 , pp. 485-495
    • Zhang, R.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 15
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R.X., Huang G.B., Sundararajan N., Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE ACM Trans. Comput. Biol. Bioinformatics 2007, 4(3):485-495.
    • (2007) IEEE ACM Trans. Comput. Biol. Bioinformatics , vol.4 , Issue.3 , pp. 485-495
    • Zhang, R.X.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 16
    • 77952583382 scopus 로고    scopus 로고
    • Human action recognition using extreme learning machine based on visual vocabularies
    • Minhas R., Baradarani A., Seifzadeh S., Wu Q.J. Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 2010, 73(10-12):1906-1917.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1906-1917
    • Minhas, R.1    Baradarani, A.2    Seifzadeh, S.3    Wu, Q.J.4
  • 17
    • 33748432957 scopus 로고    scopus 로고
    • Improved extreme learning machine for function approximation by encoding a priori information
    • Han F., Huang D.S. Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing 2006, 69(16-18):2369-2373.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2369-2373
    • Han, F.1    Huang, D.S.2
  • 18
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the extreme learning machine
    • Wang G., Zhao Y., Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008, 72(1-3):262-268.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 262-268
    • Wang, G.1    Zhao, Y.2    Wang, D.3
  • 19
    • 78049530568 scopus 로고    scopus 로고
    • Partial Lanczos extreme learning machine for single-output regression problems
    • Tang X.L., Han M. Partial Lanczos extreme learning machine for single-output regression problems. Neurocomputing 2009, 72(13-15):3066-3076.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3066-3076
    • Tang, X.L.1    Han, M.2
  • 20
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential SDP relaxation for dimension reduction
    • Bian W., Tao D. Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(5):1037-1050.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 1037-1050
    • Bian, W.1    Tao, D.2
  • 21
    • 77952548066 scopus 로고    scopus 로고
    • Multi-linear principal component analysis for face recognition with fewer features
    • Wang J., Barreto A., Wang L., Chen Y., Roshe N., Andrian J., Adjouadi M. Multi-linear principal component analysis for face recognition with fewer features. Neurocomputing 2011, 73(10-12):1550-1555.
    • (2011) Neurocomputing , vol.73 , Issue.10-12 , pp. 1550-1555
    • Wang, J.1    Barreto, A.2    Wang, L.3    Chen, Y.4    Roshe, N.5    Andrian, J.6    Adjouadi, M.7
  • 22
    • 79952617583 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative, principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease
    • LoD́pez M., RamiD́rez J., GoD́rriz J.M., I AD́lvarez D., Salas-Gonzalez F., Segovia R.Chaves, Padilla P., GoD́mez-RiD́o M. The Alzheimer's disease neuroimaging initiative, principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease. Neurocomputing 2011, 74(8):1260-1271.
    • (2011) Neurocomputing , vol.74 , Issue.8 , pp. 1260-1271
    • LoD́pez, M.1    RamiD́rez, J.2    God́rriz, J.M.3    Ad́lvarez, D.I.4    Salas-Gonzalez, F.5    Segovia, R.6    Padilla, P.7    GoD́mez-Rid́o, M.8
  • 23
    • 84862780920 scopus 로고    scopus 로고
    • CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data
    • Wang H.W., Guan R., Wu J.J. CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data. Neurocomputing 2012, 86(1):158-169.
    • (2012) Neurocomputing , vol.86 , Issue.1 , pp. 158-169
    • Wang, H.W.1    Guan, R.2    Wu, J.J.3
  • 25
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptions and singular value decomposition
    • Bourlard H., Kamp Y. Auto-association by multilayer perceptions and singular value decomposition. Biol. Cybern. 1988, 59:291-294.
    • (1988) Biol. Cybern. , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 26
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: learning from examples without local minima
    • Baldi P., Hornik K. Neural networks and principal component analysis: learning from examples without local minima. Neural Networks 1989, 2:53-58.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 27
    • 84867407797 scopus 로고    scopus 로고
    • Data filtering method and application based on auto-associative neural network
    • Cai Y. Data filtering method and application based on auto-associative neural network. Comput. Appl. Chem. (China) 2009, 26:673-676.
    • (2009) Comput. Appl. Chem. (China) , vol.26 , pp. 673-676
    • Cai, Y.1
  • 29
    • 38349127796 scopus 로고    scopus 로고
    • Feature set decomposition for decision trees
    • Rokach L., Maimon O. Feature set decomposition for decision trees. J. Intell. Data Anal. 2005, 9(2):131-158.
    • (2005) J. Intell. Data Anal. , vol.9 , Issue.2 , pp. 131-158
    • Rokach, L.1    Maimon, O.2
  • 30
    • 34250314887 scopus 로고    scopus 로고
    • Decision-tree instance-space decomposition with grouped gain-ratio
    • Rokach L., Maimon O. Decision-tree instance-space decomposition with grouped gain-ratio. Inf. Sci. 2007, 177(17):3592-3612.
    • (2007) Inf. Sci. , vol.177 , Issue.17 , pp. 3592-3612
    • Rokach, L.1    Maimon, O.2
  • 31
    • 0012257227 scopus 로고    scopus 로고
    • Extension theory and its application
    • Cai W. Extension theory and its application. Chin. Sci. Bull. 1999, 44:1538-1548.
    • (1999) Chin. Sci. Bull. , vol.44 , pp. 1538-1548
    • Cai, W.1
  • 32
    • 70350598306 scopus 로고    scopus 로고
    • Intelligentized and modeling conceptual design based on the analysis of matter element dynamic system
    • Yang G.W. Intelligentized and modeling conceptual design based on the analysis of matter element dynamic system. Comput. Eng. Appl. (China) 2005, 41:109-113.
    • (2005) Comput. Eng. Appl. (China) , vol.41 , pp. 109-113
    • Yang, G.W.1
  • 33
    • 84873375894 scopus 로고    scopus 로고
    • A new extension theory-based production operation method in industrial process
    • Xu Y., Zhu Q.X. A new extension theory-based production operation method in industrial process. Chin. J. Chem. Eng. 2013, 21(1):44-54.
    • (2013) Chin. J. Chem. Eng. , vol.21 , Issue.1 , pp. 44-54
    • Xu, Y.1    Zhu, Q.X.2
  • 34
    • 0038355085 scopus 로고    scopus 로고
    • Extension neural network and its applications
    • Wang M.H., Hung C.P. Extension neural network and its applications. Neural Networks 2003, 16:779-784.
    • (2003) Neural Networks , vol.16 , pp. 779-784
    • Wang, M.H.1    Hung, C.P.2
  • 35
    • 28244497604 scopus 로고    scopus 로고
    • Extension neural network-type 2 and its applications
    • Wang W.H. Extension neural network-type 2 and its applications. IEEE Trans. Neural Networks 2005, 16:1352-1361.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 1352-1361
    • Wang, W.H.1
  • 36
    • 24944570703 scopus 로고    scopus 로고
    • Extension neural network-type 3
    • Proceedings of the The Second International Symposium on Neural Networks
    • W.H. Wang, Extension neural network-type 3, in: Proceedings of the The Second International Symposium on Neural Networks, vol. 3496, 2005, pp. 503-508.
    • (2005) , vol.3496 , pp. 503-508
    • Wang, W.H.1
  • 40
    • 0002211763 scopus 로고
    • The extension set and incompatibility problem
    • Cai W. The extension set and incompatibility problem. J. Sci. Explor. 1983, 1:81-93.
    • (1983) J. Sci. Explor. , vol.1 , pp. 81-93
    • Cai, W.1
  • 41
    • 82755190978 scopus 로고    scopus 로고
    • Research and application of extension theory-based radial basis function neural network
    • Xu Y., Feng J. Research and application of extension theory-based radial basis function neural network. Control Decision 2011, 26:1721-1725.
    • (2011) Control Decision , vol.26 , pp. 1721-1725
    • Xu, Y.1    Feng, J.2
  • 42
    • 84893663201 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, 2012, http://archive.ics.uci.edu/ml.
    • (2012)
    • Frank, A.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.