메뉴 건너뛰기




Volumn 17, Issue 12, 2015, Pages 8278-8296

Pathological brain detection by a novel image feature-fractional fourier entropy

Author keywords

Fractional Fourier entropy; Fractional Fourier transform; Machine learning; Magnetic resonance imaging; Shannon entropy; Support vector machine; Twin support vector machine

Indexed keywords


EID: 84952683289     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e17127877     Document Type: Article
Times cited : (85)

References (68)
  • 1
    • 84940020478 scopus 로고    scopus 로고
    • ExponentialWavelet Iterative Shrinkage Thresholding Algorithm for compressed sensing magnetic resonance imaging
    • Zhang, Y.; Dong, Z.; Phillips, P.;Wang, S.; Ji, G.; Yang, J. ExponentialWavelet Iterative Shrinkage Thresholding Algorithm for compressed sensing magnetic resonance imaging. Inf. Sci. 2015, 322, 115-132.
    • (2015) Inf. Sci , vol.322 , pp. 115-132
    • Zhang, Y.1    Dong, Z.2    Phillips, P.3    Wang, S.4    Ji, G.5    Yang, J.6
  • 2
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging
    • Goh, S.; Dong, Z.; Zhang, Y.; DiMauro, S.; Peterson, B.S. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging. JAMA Psychiatry 2014, 71, 665-671.
    • (2014) JAMA Psychiatry , vol.71 , pp. 665-671
    • Goh, S.1    Dong, Z.2    Zhang, Y.3    DiMauro, S.4    Peterson, B.S.5
  • 3
    • 84919414956 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
    • Zhang, Y.;Wang, S.; Ji, G.; Dong, Z. Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Trans. Electr. Electron. Eng. 2015, 10, 116-117.
    • (2015) IEEJ Trans. Electr. Electron. Eng , vol.10 , pp. 116-117
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 5
    • 78651253373 scopus 로고    scopus 로고
    • A Novel Method for Magnetic Resonance Brain Image Classification based on Adaptive Chaotic PSO
    • Zhang, Y.;Wang, S.;Wu, L. A Novel Method for Magnetic Resonance Brain Image Classification based on Adaptive Chaotic PSO. Prog. Electromagn. Res. 2010, 109, 325-343.
    • (2010) Prog. Electromagn. Res , vol.109 , pp. 325-343
    • Zhang, Y.1    Wang, S.2    Wu, L.3
  • 6
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree
    • Zhang, Y.;Wang, S.; Dong, Z. Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree. Prog. Electromagn. Res. 2014, 144, 171-184.
    • (2014) Prog. Electromagn. Res , vol.144 , pp. 171-184
    • Zhang, Y.1    Wang, S.2    Dong, Z.3
  • 7
    • 85000692374 scopus 로고    scopus 로고
    • Magnetic Resonance Brain Image Classification via Stationary Wavelet Transform and Generalized Eigenvalue Proximal Support Vector Machine
    • Zhang, Y.; Dong, Z.; Liu, A.; Wang, S.; Ji, G.; Zhang, Z.; Yang, J. Magnetic Resonance Brain Image Classification via Stationary Wavelet Transform and Generalized Eigenvalue Proximal Support Vector Machine. J. Med. Imaging Health Inf. 2015, 5, 1395-1403.
    • (2015) J. Med. Imaging Health Inf , vol.5 , pp. 1395-1403
    • Zhang, Y.1    Dong, Z.2    Liu, A.3    Wang, S.4    Ji, G.5    Zhang, Z.6    Yang, J.7
  • 8
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm
    • Zhang, Y.;Wu, L.;Wang, S. Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm. Prog. Electromagn. Res. 2011, 116, 65-79.
    • (2011) Prog. Electromagn. Res , vol.116 , pp. 65-79
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 9
    • 84944903522 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease by displacement field and machine learning
    • Zhang, Y.; Wang, S. Detection of Alzheimer's disease by displacement field and machine learning. PeerJ 2015, 3.
    • (2015) PeerJ , pp. 3
    • Zhang, Y.1    Wang, S.2
  • 10
    • 84940372176 scopus 로고    scopus 로고
    • A Bayesian Framework for Combining Protein andNetwork Topology Information for Predicting Protein-Protein Interactions
    • Birlutiu, A.; d'Alche-Buc, F.; Heskes, T. A Bayesian Framework for Combining Protein andNetwork Topology Information for Predicting Protein-Protein Interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 538-550.
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.12 , pp. 538-550
    • Birlutiu, A.1    d'Alche-Buc, F.2    Heskes, T.3
  • 11
    • 84904806309 scopus 로고    scopus 로고
    • Non-parallel support vector classifiers with different loss functions
    • Mehrkanoon, S.; Huang, X.; Suykens, J.A.K. Non-parallel support vector classifiers with different loss functions. Neurocomputing 2014, 143, 294-301.
    • (2014) Neurocomputing , vol.143 , pp. 294-301
    • Mehrkanoon, S.1    Huang, X.2    Suykens, J.A.K.3
  • 12
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot, S.; Patnaik, L.M.; Jagannathan, N.R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 2006, 1, 86-92.
    • (2006) Biomed. Signal Process. Control , vol.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 13
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan, E.-S.A.; Hosny, T.; Salem, A.-B.M. Hybrid intelligent techniques for MRI brain images classification. Digit. Signal Process. 2010, 20, 433-441.
    • (2010) Digit. Signal Process , vol.20 , pp. 433-441
    • El-Dahshan, E.-S.A.1    Hosny, T.2    Salem, A.-B.M.3
  • 14
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Zhang, Y.; Dong, Z.; Wu, L.; Wang, S. A hybrid method for MRI brain image classification. Expert Syst. Appl. 2011, 38, 10049-10053.
    • (2011) Expert Syst. Appl , vol.38 , pp. 10049-10053
    • Zhang, Y.1    Dong, Z.2    Wu, L.3    Wang, S.4
  • 15
    • 84866525215 scopus 로고    scopus 로고
    • An MR Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine
    • Zhang, Y.; Wu, L. An MR Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine. Prog. Electromagn. Res. 2012, 130, 369-388.
    • (2012) Prog. Electromagn. Res , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 16
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha, M.; Joseph, K.P.; Mathew, A.T. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit. Lett. 2013, 34, 2151-2156.
    • (2013) Pattern Recognit. Lett , vol.34 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 17
    • 84929627799 scopus 로고    scopus 로고
    • Effect of spider-web-plot in MR brain image classification
    • Zhang, Y.; Dong, Z.; Ji, G.; Wang, S. Effect of spider-web-plot in MR brain image classification. Pattern Recognit. Lett. 2015, 62, 14-16.
    • (2015) Pattern Recognit. Lett , vol.62 , pp. 14-16
    • Zhang, Y.1    Dong, Z.2    Ji, G.3    Wang, S.4
  • 18
    • 84948461606 scopus 로고    scopus 로고
    • Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine
    • Zhang, Y.-D.;Wang, S.-H.; Yang, X.-J.; Dong, Z.-C.; Liu, G.; Phillips, P.; Yuan, T.-F. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 2015, 4.
    • (2015) SpringerPlus , pp. 4
    • Zhang, Y.-D.1    Wang, S.-H.2    Yang, X.-J.3    Dong, Z.-C.4    Liu, G.5    Phillips, P.6    Yuan, T.-F.7
  • 19
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR Image Classification Using Multiscale Geometric Analysis of Ripplet
    • Das, S.; Chowdhury, M.; Kundu, M.K. Brain MR Image Classification Using Multiscale Geometric Analysis of Ripplet. Prog. Electromagn. Res. 2013, 137.
    • (2013) Prog. Electromagn. Res , pp. 137
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 20
    • 84885597453 scopus 로고    scopus 로고
    • An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine
    • Zhang, Y.; Wang, S.; Ji, G.; Dong, Z. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine. Sci. World J. 2013, 2013, 130134.
    • (2013) Sci. World J , vol.2013
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 21
    • 84899008824 scopus 로고    scopus 로고
    • Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
    • El-Dahshan, E.-S.A.; Mohsen, H.M.; Revett, K.; Salem, A.-B.M. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Syst. Appl. 2014, 41, 5526-5545
    • (2014) Expert Syst. Appl , vol.41 , pp. 5526-5545
    • El-Dahshan, E.-S.A.1    Mohsen, H.M.2    Revett, K.3    Salem, A.-B.M.4
  • 22
    • 84944456448 scopus 로고    scopus 로고
    • Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier
    • Springer: Berlin/Heidelberg, Germany
    • Zhou, X.; Wang, S.; Xu, W.; Ji, G.; Phillips, P.; Sun, P.; Zhang, Y. Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier. In Bioinformatics and Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 201-209.
    • (2015) Bioinformatics and Biomedical Engineering , pp. 201-209
    • Zhou, X.1    Wang, S.2    Xu, W.3    Ji, G.4    Phillips, P.5    Sun, P.6    Zhang, Y.7
  • 23
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM)
    • Zhang, Y.; Dong, Z.; Wang, S.; Ji, G.; Yang, J. Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM). Entropy 2015, 17, 1795-1813.
    • (2015) Entropy , vol.17 , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3    Ji, G.4    Yang, J.5
  • 25
    • 84920501690 scopus 로고    scopus 로고
    • Combining Tissue Segmentation and Neural Network for Brain Tumor Detection
    • Damodharan, S.; Raghavan, D. Combining Tissue Segmentation and Neural Network for Brain Tumor Detection. Int. Arab J. Inf. Technol. 2015, 12, 42-52.
    • (2015) Int. Arab J. Inf. Technol , vol.12 , pp. 42-52
    • Damodharan, S.1    Raghavan, D.2
  • 26
    • 84952699948 scopus 로고    scopus 로고
    • Automated Classification of Brain MR Images UsingWavelet-Energy and Support Vector Machines
    • Electronic, Industrial and Control Engineering (MEIC 2015), Shenyang, China, 1-3 April
    • Zhang, G-S.; Wang, Q.; Feng, C.; Lee, E.; Ji, G.; Wang, S.; Zhang, Y.; Yan, J. Automated Classification of Brain MR Images UsingWavelet-Energy and Support Vector Machines. In Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015), Shenyang, China, 1-3 April 2015; pp. 683-686.
    • (2015) Proceedings of the 2015 International Conference on Mechatronics
    • Zhang, G.-S.1    Wang, Q.2    Feng, C.3    Lee, E.4    Ji, G.5    Wang, S.6    Zhang, Y.7    Yan, J.8
  • 28
    • 84923171982 scopus 로고    scopus 로고
    • A simple and intelligent approach for brain MRI classification
    • Nazir, M.; Wahid, F.; Khan, S.A. A simple and intelligent approach for brain MRI classification. J. Intell. Fuzzy Syst. 2015, 28, 1127-1135.
    • (2015) J. Intell. Fuzzy Syst , vol.28 , pp. 1127-1135
    • Nazir, M.1    Wahid, F.2    Khan, S.A.3
  • 29
    • 84922461060 scopus 로고    scopus 로고
    • Performance Analysis of Neural Networks for Classification of Medical Images with Wavelets as a Feature Extractor
    • Harikumar, R.; Kumar, B.V. Performance Analysis of Neural Networks for Classification of Medical Images with Wavelets as a Feature Extractor. Int. J. Imaging Syst. Technol. 2015, 25, 33-40.
    • (2015) Int. J. Imaging Syst. Technol , vol.25 , pp. 33-40
    • Harikumar, R.1    Kumar, B.V.2
  • 31
    • 84937437761 scopus 로고    scopus 로고
    • Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
    • Zhang, Y.; Wang, S.; Dong, Z.; Phillips, P.; Ji, G.; Yang, J. Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog. Electromagn. Res. 2015, 152, 41-58.
    • (2015) Prog. Electromagn. Res , vol.152 , pp. 41-58
    • Zhang, Y.1    Wang, S.2    Dong, Z.3    Phillips, P.4    Ji, G.5    Yang, J.6
  • 32
    • 84929379453 scopus 로고    scopus 로고
    • Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns
    • Farzan, A.; Mashohor, S.; Ramli, A.R.; Mahmud, R. Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav. Brain Res. 2015, 290, 124-130.
    • (2015) Behav. Brain Res , vol.290 , pp. 124-130
    • Farzan, A.1    Mashohor, S.2    Ramli, A.R.3    Mahmud, R.4
  • 33
    • 84977465820 scopus 로고    scopus 로고
    • Pathological brain detection based on wavelet entropy and Hu moment invariants
    • Zhang, Y.; Wang, S.; Sun, P.; Phillips, P. Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med. Mater. Eng. 2015, 26, S1283-S1290.
    • (2015) Bio-Med. Mater. Eng , vol.26 , pp. S1283-S1290
    • Zhang, Y.1    Wang, S.2    Sun, P.3    Phillips, P.4
  • 35
    • 84935595548 scopus 로고    scopus 로고
    • Local activity features for computer aided diagnosis of schizophrenia on resting-state fMRI
    • Savio, A.; Graña, M. Local activity features for computer aided diagnosis of schizophrenia on resting-state fMRI. Neurocomputing 2015, 164, 154-161.
    • (2015) Neurocomputing , vol.164 , pp. 154-161
    • Savio, A.1    Graña, M.2
  • 36
    • 84931263154 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
    • Zhang, Y.; Wang, S.; Phillips, P.; Dong, Z.; Ji, G.; Yang, J. Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Signal Process. Control 2015, 21, 58-73.
    • (2015) Biomed. Signal Process. Control , vol.21 , pp. 58-73
    • Zhang, Y.1    Wang, S.2    Phillips, P.3    Dong, Z.4    Ji, G.5    Yang, J.6
  • 37
    • 84876295364 scopus 로고    scopus 로고
    • Fractional Fourier transform based features for speaker recognition using support vector machine
    • Ajmera, P.K.; Holambe, R.S. Fractional Fourier transform based features for speaker recognition using support vector machine. Comput. Electr. Eng. 2013, 39, 550-557.
    • (2013) Comput. Electr. Eng , vol.39 , pp. 550-557
    • Ajmera, P.K.1    Holambe, R.S.2
  • 38
    • 77950997359 scopus 로고    scopus 로고
    • Harmonic wavelet approximation of random, fractal and high frequency signals
    • Cattani, C. Harmonic wavelet approximation of random, fractal and high frequency signals. Telecommun. Syst. 2010, 43, 207-217.
    • (2010) Telecommun. Syst , vol.43 , pp. 207-217
    • Cattani, C.1
  • 40
    • 85027951314 scopus 로고    scopus 로고
    • FrFT-Based Scene Classification of Phase-Gradient InSAR Images and Effective Baseline Dependence
    • Cagatay, N.D.; Datcu, M. FrFT-Based Scene Classification of Phase-Gradient InSAR Images and Effective Baseline Dependence. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1131-1135.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1131-1135
    • Cagatay, N.D.1    Datcu, M.2
  • 41
    • 0029358647 scopus 로고
    • Fractionalization of Fourier transform
    • Shih, C.-C. Fractionalization of Fourier transform. Opt. Commun. 1995, 118, 495-498.
    • (1995) Opt. Commun , vol.118 , pp. 495-498
    • Shih, C.-C.1
  • 44
    • 84864952569 scopus 로고    scopus 로고
    • Fractional Calculus and Shannon Wavelet
    • Cattani, C. Fractional Calculus and Shannon Wavelet. Math. Probl. Eng. 2012, 2012, 502812.
    • (2012) Math. Probl. Eng , vol.2012
    • Cattani, C.1
  • 45
    • 84924025120 scopus 로고    scopus 로고
    • A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments
    • Heskes, T.; Eisinga, R.; Breitling, R. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinform. 2014, 15.
    • (2014) BMC Bioinform , pp. 15
    • Heskes, T.1    Eisinga, R.2    Breitling, R.3
  • 46
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
    • Zhang, Y.; Dong, Z.; Phillips, P.; Wang, S.; Ji, G.; Yang, J.; Yuan, T.-F. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 2015, 9.
    • (2015) Front. Comput. Neurosci , pp. 9
    • Zhang, Y.1    Dong, Z.2    Phillips, P.3    Wang, S.4    Ji, G.5    Yang, J.6    Yuan, T.-F.7
  • 47
    • 84938196834 scopus 로고    scopus 로고
    • Women at extreme risk for obesity-related carcinogenesis: Baseline endometrial pathology and impact of bariatric surgery on weight, metabolic profiles and quality of life.
    • Modesitt, S.C.; Hallowell, P.T.; Slack-Davis, J.K.; Michalek, R.D.; Atkins, K.A.; Kelley, S.L.; Arapovic, S.; Shupnik, M.A.; Hoehn, K.Women at extreme risk for obesity-related carcinogenesis: Baseline endometrial pathology and impact of bariatric surgery on weight, metabolic profiles and quality of life. Gynecol. Oncol. 2015, 138, 238-245.
    • (2015) Gynecol. Oncol , vol.138 , pp. 238-245
    • Modesitt, S.C.1    Hallowell, P.T.2    Slack-Davis, J.K.3    Michalek, R.D.4    Atkins, K.A.5    Kelley, S.L.6    Arapovic, S.7    Shupnik, M.A.8    Hoehn, K.9
  • 48
    • 84941277680 scopus 로고    scopus 로고
    • Comparative Transcriptome Analysis of Cell-Free Fetal RNA from Amniotic Fluid and RNA from Amniocytes in Uncomplicated Pregnancies
    • Kang, J.H.; Park, H.J.; Jung, Y.W.; Shim, S.H.; Sung, S.R.; Park, J.E.; Cha, D.H.; Ahn, E.H. Comparative Transcriptome Analysis of Cell-Free Fetal RNA from Amniotic Fluid and RNA from Amniocytes in Uncomplicated Pregnancies. PLoS ONE 2015, 10, e0132955.
    • (2015) PLoS ONE , vol.10
    • Kang, J.H.1    Park, H.J.2    Jung, Y.W.3    Shim, S.H.4    Sung, S.R.5    Park, J.E.6    Cha, D.H.7    Ahn, E.H.8
  • 49
    • 84929514041 scopus 로고    scopus 로고
    • Variable ranking based on the estimated degree of separation for two distributions of data by the length of the receiver operating characteristic curve
    • Maswadeh, W.M.; Snyder, A.P. Variable ranking based on the estimated degree of separation for two distributions of data by the length of the receiver operating characteristic curve. Anal. Chimica Acta 2015, 876, 39-48.
    • (2015) Anal. Chimica Acta , vol.876 , pp. 39-48
    • Maswadeh, W.M.1    Snyder, A.P.2
  • 50
    • 84874788954 scopus 로고    scopus 로고
    • Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine
    • Wu, S.-D.; Wu, C.-W.; Wu, T.-Y.; Wang, C.-C. Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine. Entropy 2013, 15, 416-433.
    • (2013) Entropy , vol.15 , pp. 416-433
    • Wu, S.-D.1    Wu, C.-W.2    Wu, T.-Y.3    Wang, C.-C.4
  • 51
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector machine classification via generalized eigenvalues
    • Mangasarian, O.L.; Wild, E.W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 69-74.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 52
    • 79957998335 scopus 로고    scopus 로고
    • Generalized eigenvalue proximal support vector regressor
    • Khemchandani, R.; Karpatne, A.; Chandra, S. Generalized eigenvalue proximal support vector regressor. Expert Syst. Appl. 2011, 38, 13136-13142.
    • (2011) Expert Syst. Appl , vol.38 , pp. 13136-13142
    • Khemchandani, R.1    Karpatne, A.2    Chandra, S.3
  • 53
    • 84873394537 scopus 로고    scopus 로고
    • Improved Generalized Eigenvalue Proximal Support Vector Machine
    • Shao, Y.-H.; Deng, N.-Y.; Chen, W.-J.; Wang, Z. Improved Generalized Eigenvalue Proximal Support Vector Machine. IEEE Signal Process. Lett. 2013, 20, 213-216.
    • (2013) IEEE Signal Process. Lett , vol.20 , pp. 213-216
    • Shao, Y.-H.1    Deng, N.-Y.2    Chen, W.-J.3    Wang, Z.4
  • 55
    • 84900390433 scopus 로고    scopus 로고
    • Energy-based model of least squares twin Support Vector Machines for human action recognition
    • Nasiri, J.A.; Charkari, N.M.; Mozafari, K. Energy-based model of least squares twin Support Vector Machines for human action recognition. Signal Process. 2014, 104, 248-257.
    • (2014) Signal Process , vol.104 , pp. 248-257
    • Nasiri, J.A.1    Charkari, N.M.2    Mozafari, K.3
  • 56
    • 84918814117 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using biased twin support vector machine
    • Xu, Z.; Qi, Z.; Zhang, J. Learning with positive and unlabeled examples using biased twin support vector machine. Neural Comput. Appl. 2014, 25, 1303-1311.
    • (2014) Neural Comput. Appl , vol.25 , pp. 1303-1311
    • Xu, Z.1    Qi, Z.2    Zhang, J.3
  • 57
    • 84900803418 scopus 로고    scopus 로고
    • An efficient weighted Lagrangian twin support vector machine for imbalanced data classification
    • Shao, Y.-H.; Chen, W.-J.; Zhang, J.-J.; Wang, Z.; Deng, N.-Y. An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognit. 2014, 47, 3158-3167.
    • (2014) Pattern Recognit , vol.47 , pp. 3158-3167
    • Shao, Y.-H.1    Chen, W.-J.2    Zhang, J.-J.3    Wang, Z.4    Deng, N.-Y.5
  • 58
    • 84938546914 scopus 로고    scopus 로고
    • Hybrid support vector machine rule extraction method for discovering the preferences of stock market investors: Evidence from Montenegro
    • Kašćelan, L.; Kašćelan, V.; Jovanović, M. Hybrid support vector machine rule extraction method for discovering the preferences of stock market investors: Evidence from Montenegro. Intell. Autom. Soft Comput. 2015, 21, 503-522.
    • (2015) Intell. Autom. Soft Comput , vol.21 , pp. 503-522
    • Kašćelan, L.1    Kašćelan, V.2    Jovanović, M.3
  • 59
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar, M.A.; Gopal, M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36, 7535-7543.
    • (2009) Expert Syst. Appl , vol.36 , pp. 7535-7543
    • Kumar, M.A.1    Gopal, M.2
  • 60
    • 84904855303 scopus 로고    scopus 로고
    • An overview on twin support vector machines
    • Ding, S.; Yu, J.; Qi, B.; Huang, H. An overview on twin support vector machines. Artif. Intell. Rev. 2014, 42, 245-252.
    • (2014) Artif. Intell. Rev , vol.42 , pp. 245-252
    • Ding, S.1    Yu, J.2    Qi, B.3    Huang, H.4
  • 61
    • 84940487338 scopus 로고    scopus 로고
    • Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization
    • Wang, S.; Zhang, Y.; Ji, G.; Yang, J.; Wu, J.; Wei, L. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization. Entropy 2015, 17, 5711-5728.
    • (2015) Entropy , vol.17 , pp. 5711-5728
    • Wang, S.1    Zhang, Y.2    Ji, G.3    Yang, J.4    Wu, J.5    Wei, L.6
  • 62
    • 84946056461 scopus 로고    scopus 로고
    • Identification of Green, Oolong and Black Teas in China viaWavelet Packet Entropy and Fuzzy Support Vector Machine
    • Wang, S.; Yang, X.; Zhang, Y.; Phillips, P.; Yang, J.; Yuan, T.-F. Identification of Green, Oolong and Black Teas in China viaWavelet Packet Entropy and Fuzzy Support Vector Machine. Entropy 2015, 17, 6663-6682.
    • (2015) Entropy , vol.17 , pp. 6663-6682
    • Wang, S.1    Yang, X.2    Zhang, Y.3    Phillips, P.4    Yang, J.5    Yuan, T.-F.6
  • 63
    • 84895060542 scopus 로고    scopus 로고
    • Premise Selection for Mathematics by Corpus Analysis and Kernel Methods
    • Alama, J.; Heskes, T.; Kühlwein, D.; Tsivtsivadze, E.; Urban, J. Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. J. Autom. Reason. 2014, 52, 191-213.
    • (2014) J. Autom. Reason , vol.52 , pp. 191-213
    • Alama, J.1    Heskes, T.2    Kühlwein, D.3    Tsivtsivadze, E.4    Urban, J.5
  • 64
    • 84935873594 scopus 로고    scopus 로고
    • Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data
    • Fang, L.; Zhao, H.;Wang, P.; Yu, M.; Yan, J.; Cheng, W.; Chen, P. Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data. Biomed. Signal Process. Control 2015, 21, 82-89.
    • (2015) Biomed. Signal Process. Control , vol.21 , pp. 82-89
    • Fang, L.1    Zhao, H.2    Wang, P.3    Yu, M.4    Yan, J.5    Cheng, W.6    Chen, P.7
  • 65
    • 70350089978 scopus 로고    scopus 로고
    • Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior
    • Chen, Y.; Gao, D.; Nie, C.; Luo, L.; Chen, W.; Yin, X.; Lin, Y. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior. Comput. Med. Imaging Graph. 2009, 33, 495-500.
    • (2009) Comput. Med. Imaging Graph , vol.33 , pp. 495-500
    • Chen, Y.1    Gao, D.2    Nie, C.3    Luo, L.4    Chen, W.5    Yin, X.6    Lin, Y.7
  • 66
    • 84952656467 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging
    • Wang, S.; Liu, G.; Yuan, T.F. Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J. Alzheimer Disease. 2016, 50, 1-23.
    • (2016) J. Alzheimer Disease , vol.50 , pp. 1-23
    • Wang, S.1    Liu, G.2    Yuan, T.F.3
  • 67
    • 84929944640 scopus 로고    scopus 로고
    • Deep learning with support vector data description
    • Kim, S.; Choi, Y.; Lee, M. Deep learning with support vector data description. Neurocomputing 2015, 165, 111-117.
    • (2015) Neurocomputing , vol.165 , pp. 111-117
    • Kim, S.1    Choi, Y.2    Lee, M.3
  • 68
    • 84945291666 scopus 로고    scopus 로고
    • A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications
    • Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 501, 931256.
    • (2015) Math. Probl. Eng , vol.501
    • Zhang, Y.1    Wang, S.2    Ji, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.